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In this paper, we prove the moduli spaces of genus zero stable log maps to a large class

of wonderful compactifications of sober spherical homogeneous spaces are irreducible

and unirational.

1 Introduction

Throughout this paper, we work over an algebraically closed field of characteristic zero,

denoted by C.

1.1 Stable log maps

Let X be a fine and saturated log scheme. A stable log map to X over a log scheme S is

given by the following data:

(C → S, f : C → X, p1, . . . , pn)
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2 Q. Chen and Y. Zhu

where

(1) C → S is a family of log curve with markings p1, . . . , pn, see [18, 26];

(2) f : C → X is a morphism of log schemes;

(3) the underlying map f : C → X obtained by removing log structures of f is

stable in the usual sense.

The arrows between stable log maps are defined by Cartesian diagram in the category

of log schemes. We thus obtain MΓ (X) the category of stable log maps with discrete

data Γ fibered over the category of log schemes. Here Γ = (
g,n, β, {ci}n

i=1

)
consists of the

genus g of the source curve, the curve class β of the underlying stable map, the number

nof marked points, and the contact orders ci for the ith marked point. The contact order

describes the tangency condition of the stable log map f with the boundary of X along

the marked point.

The theory of stable log maps has been established in a sequence of papers

[1, 3, 11, 14, 30]. The fibered category MΓ (X) is shown to be represented by a Deligne–

Mumford stack with the natural fine and saturated log structure, and is proper when

the underlying scheme X is projective.

1.2 Main result

The goal of the current paper is to prove the irreducibility and unirationality of the

space of stable log maps of genus zero for wonderful compactifications [20, 22].

Theorem 1.1. Let G be a semi-simple linear algebraic group over C, and let H ⊂ G be

a sober spherical subgroup. Let X be the log smooth variety associated to the wonder-

ful compactification of G/H . Assume that all colors of the wonderful compactification

are of type (b). For any discrete data Γ = (
g = 0,n, β, {ci}n

i=1

)
, the coarse moduli space

associated to the stack MΓ (X) of stable log maps, if it is non-empty, is irreducible and

unirational. �

The irreducibility is proved in Proposition 4.3, and the unirationality follows

from Proposition 4.8.

Remark 1.2. In the above theorem, the colors are the B-stable divisors of G/H .

According to Luna’s study of wonderful compactifications [22, Section 1.4], each

color has a type: (a), (a’), or (b); see Section 2.2 and Definition 2.5 for more

details.
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Irreducibility and Unirationality 3

The class of wonderful compactifications with all colors of type (b) contains

large number of interesting examples, including

• wonderful compactifications of semisimple groups;

• spherical varieties of minimal rank [9, 27];

• cuspidal spherical varieties of rank one with two exceptions: (P2, a smooth

conic), and (P1 × P1, the diagonal P1) [4, 7]. �

Remark 1.3. Our proof indeed shows that Theorem 1.1 holds for any curve class β satis-

fying Assumption 2.11. When the type (b) condition holds, Assumption 2.11 is automatic.

Assumption 2.11 is to enforce the underlying maps of the general limiting stable

log maps factor through the center Y of the target X, see Section 2.2 for the definition.

In general, the uniqueness of Proposition 3.1 could fail without Assumption 2.11, and

a different approach to the irreducibility may be required. We hope to investigate this

situation in our future work. �

Remark 1.4. The non-emptyness of the space of stable log maps of genus zero is com-

pletely solved in our paper [13], where we give a classification of all discrete data Γ for

such stable log maps. �

Remark 1.5. Wonderful compactifications of rank zero are projective homogeneous

spaces with the empty boundary and the “type (b)” condition is automatic. In this case,

the stack of stable log maps MΓ (X) is the same as the stack of usual stable maps to

X, and is proved to be irreducible and rational by Kim and Pandharipande [19] by con-

sidering the maximal degeneration via a general torus action. The irreducibility is also

proved independently by Thomsen [28]. The above result may be viewed as a generaliza-

tion of their results in the logarithmic setting. �

Remark 1.6. In case X is given by a toric variety with its toric boundary, the stack

MΓ (X) of two-pointed genus zero stable log maps to X is shown to have its coarse

moduli given by the Chow quotient of X; see [12]. �

1.3 Organization of the paper

In this paper, we consider a general torus action on the stack MΓ (X) induced via its

action on the target X. In Section 2, we study the maximal degeneration of underlying

stable maps in X under the give torus action. This is quite similar to the situation of [19].
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4 Q. Chen and Y. Zhu

However, not every underlying stable log map can be lifted to stable log maps,

since the canonical morphism MΓ (X)→ MΓ

(
X

)
to the stack of underlying stable maps

is not surjective in general. This is a major technique difficulty of stable log maps. In

Section 3, we show that the maximal degenerate underlying stable map in question

admits a unique logarithmic lifting. Assumption 2.11 is crucial for the uniqueness of

the lifting.

In Section 4, we provide the proof of Theorem 1.1 by investigating the maxi-

mal Bialynicki–Birula cell of MΓ (X) under the given torus action. Note that the stack

MΓ (X) is only log smooth along the fixed locus, and could have toric singularities in

general. We thus pass to an equivariant resolution of the Bialynicki–Birula cell. An anal-

ysis of the log structure along the fixed locus is given for the desingularization to be

unirational.

A further study of genus zero log Gromov–Witten invariants for wonderful com-

pactifications will require a much more detailed analysis of all Bialynicki–Birula cells.

We wish to carry this out in our future work.

1.4 Notations

All log structures in this paper are assumed to be fine and saturated. We refer to [17] for

the basics of logarithmic geometry that will be used in this paper. Capital letters such

as C , S, X,Y, and Z are reserved for log schemes. The corresponding underlying schemes

are denoted by C , S, X,Y, and Z , respectively.

Given a log scheme X, a stable log map to X is usually denoted by f : C/S → X

where C → S is the family of source log curves. When S is a geometric point with the

trivial log structure, we will simply write f : C → X. Recall the discrete data for stable

log maps as we have introduced previously:

Γ = (
g = 0,n, β, {ci}n

i=1

)
, (1.1)

where g denotes the genus of the source underlying curve, n is a non-negative integer

denotes the number of marked points, β is a curve class in X, and {ci}n
i=1 is the col-

lection of contact orders of the marked points along the boundary divisor of X. See

Construction 3.2 for the contact orders needed in the paper. We refer the reader to

[1, Section 4.1; 2] for more details of contact orders.

Let MΓ (X) be the stack of n-marked, genus zero stable log maps with curve class

β ∈ H2 (X), and contact order ci along the ith marking. Write Γ = (g = 0,n, β) by removing

contact orders from Γ .
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Irreducibility and Unirationality 5

2 Specialization of Underlying Stable Maps

2.1 Torus invariant curves and divisors on X

Throughout this paper, we fix a simply connected semisimple linear algebraic group G

over C. Denote by X∗ := X∗ (T) and X∗ = X∗ (T) the character and cocharacter groups of

T , respectively.

Consider a sober spherical subgroup H ⊂ G. This means that G/H is a spher-

ical variety and NG (H) /H is finite. Let X be the wonderful compactification of G/H .

Denote by X the log smooth varieties associated to the pair
(
X, X � G/H

)
with the natu-

ral G-action; see [13, Proposition 5.4].

We first recall the basic setup regarding the Bialynicki–Birula stratification of

X as in [8, Section 1]. For the rest of this paper, we fix a regular one-dimensional torus

λ : Gm → T such that the set of fixed points Xλ equals XT . Choose a Borel subgroup B

containing T such that

B = G (λ) :=
{

g ∈ G| lim
t→0

λ (t) gλ
(
t−1) ∈ G

}
.

Let B− be the opposite Borel subgroup of B.

Let Y be the unique closed G-orbits of X. Hence the set XB−
consists of a unique

point lying on Y, denoted by x−. Denote by Y ⊂ X the strict closed sub-log schemes with

the underlying structure Y.

For any closed subscheme Z ⊂ Xλ, we introduce two subsets of X:

X+ (
Z
) =

{
x ∈ X | lim

t→0
λ (t) · x ∈ Z

}

and

X− (
Z
) =

{
x ∈ X | lim

t→∞ λ (t) · x ∈ Z
}
.

Lemma 2.1 ([8, Lemma 2]). We have the following:

(1) X− (
x−) ⊂ X is open. We write X− := X− (

x−)
in short.

(2) X− is an open affine B-invariant neighborhood of x−.

(3) Gm acts on the algebra of regular functions OX− with positive weights. Thus

the Gm-action extends to a morphism:

A1 × X− → X−. �
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6 Q. Chen and Y. Zhu

Lemma 2.2. The colors of X are the irreducible components D1, . . . , Dl of the closed

subset X � X−. In particular, they are B-stable but not G-stable. �

Proof. Let XY,B be the B-invariant open subset of X by deleting all colors. By [10, Propo-

sition 2.2], we have

XY,B = {x ∈ X | Bx ⊃ Y}.

Thus it suffices to show that XY,B = X−. The inclusion X− ⊂ XY,B is clear because the

orbit Bx− is dense in Y. The other inclusion follows from that the complement of X− is

a union of colors, cf., [8, Theorem 1]. �

Theorem 2.3 ([8, Theorem 1]). The set of colors D1, . . . , Dl are globally generated Cartier

divisors, which form a Z-basis of the Picard group of X. Furthermore, they generate the

nef cone of X. �

For wonderful compactifications, we strengthen a result of Brion [8, Theorem 2].

Theorem 2.4. When X is a wonderful compactification, we have the following:

(1) For each i = 1, . . . , l, there exists a unique point x−
i ∈ Dλ

i such that Di is the

closure of X− (
x−

i

)
.

(2) The B−-invariant curve Pi = B−x−
i intersects Dj at the unique point x−

i , and

intersects no other Di. All Pi are isomorphic to P1.

(3) Pi intersects Di transversally at x−
i . Thus

(
Pi.Dj

) = δi j and the classes

P1, . . . , Pl form a Z-basis of N1
(
X

)
. �

Proof. Brion proves (1), (2) in [8, Theorem 2]. He also proves (3) when X is nonsingu-

lar. It remains to prove the case when X is singular. Here the trick is to use Luna’s

idea on spherical closure [22, Section 6.1]. Let H ′ ⊃ H be the spherical closure of H and

let X′ be the wonderful compactification of G/H ′. By [29, Remark 30.1], there exists a

G-equivariant morphism

π : X → X′

such that X′ is smooth [21, Corollary 7.6] and the set of colors on X is identified with

those of X′ via pullback along π . Now (3) follows from its nonsingular case and the

projection formula. �
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Irreducibility and Unirationality 7

2.2 Type (b) condition

In general, the torus fixed points x−
i for j = 1, . . . , l do not necessarily lie in the closed

orbit Y. One may for example, consider the wonderful compactification corresponding

to the pair
(
P2,a smooth conic

)
. Next we give a sufficient and necessary criterion to rule

out such situation.

We briefly recall the type of a color on wonderful compactifications [22]. Let

Σ be the finite set of spherical roots of X, lying in the character lattice X∗ (T). See

[22, Proposition 6.4].

We say that a simple root α moves a color D if PαD 
= D where Pα is the minimal

parabolic group containing B and associated to α. Each color D is moved by a unique

simple root αD. Let Δ(α) be the set of colors moved by α.

Definition 2.5. We say that the color D is

(1) of type (a) if Δ(αD) contains two colors;

(2) of type (a’) if Δ(αD)= {D} and 2α ∈Σ ;

(3) of type (b) if Δ(αD)= {D} and no multiple of α is in Σ . �

By [22, Section 1.4], each color belongs to a unique type as above.

Proposition 2.6. A color Di is of type (b) if and only if the fixed point x−
i lies in the closed

orbit Y. �

Proof. Let α be the simple root moving Di. Consider the localization Xα of X at α, that

is, Xα is the Tα-fixed points of PαXY,B , where Pα is the standard minimal parabolic group

determined by α, and Tα is the connected component of the center of the Levi subgroup

L (Pα). By [29, Lemma 30.2], Xα is a wonderful compactification of rank less than one

with the action of either SL2 or PGL2, and x−
i is the λ-torus fixed point where a generic

point of the color Di ∩ Xα retracts to. By the classification result in [29, p. 216], if α

is of type (b), Xα is a projective homogeneous space isomorphic to P1, which implies

that x−
i lies in the closed orbit Y. If α is not of type (b), Xα is isomorphic to the pair(

P2, conic
)

or
(
P1 × P1, the diagonal

)
. In these two cases, x−

i does not lie in the unique

closed orbit. �

2.3 A specialization of non-degenerate underlying stable maps

Let U be the union

X− ∪ X− (
x−

1

) ∪ · · · ∪ X− (
x−

l

)
. (2.1)
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8 Q. Chen and Y. Zhu

with the notations as in Theorem 2.4. By the Bialynicki–Birula stratification, U is an

open subscheme of X whose completement is of codimention at least 2.

We consider the following situation.

Notation 2.7. Let f : C → X be a genus zero usual stable map with discrete data Γ

induced by Γ as in (1.1) with the following properties:

(1) C ∼= P1, and f
(
C

) ∩ G/H 
= ∅.

(2) f
(
C

) ⊂ U , with U given by (2.1).

(3) f
(
C

)
intersects the divisors Di transversally at distinct non-marked points.

(4) The images of all markings under f lie in X−.

In particular, the stable map f lifts to a unique stable log map f : C → X. �

Consider the usual stable map f : C → X as in Notation 2.7. We may assume that

β =
l∑

i=1

ki[Pi], (2.2)

with non-negative integers ki for all i.

Consider the general Gm-action λ as in the beginning of Section 2.1. Denote by

f
0

: C 0 → X the limit of the underlying stable map f when t → ∞ under the Gm-action.

Notation 2.8. To construct such f
0
, we introduce a underlying pre-stable map

F̃ : C 1 → X as follows:

(1) C 1 = C ∪ ⋃l
i=1

(
∪ki

j=1Pi, j

)
, where Pi, j

∼= P1 is attached to C at xi, j;

(2) All marked points on C 1 is given by the markings on C ;

(3) F̃
(
C

) = x−, and F̃ |Pi, j : Pi, j → Pi with F̃∗[Pi, j] = [Pi]. �

Lemma 2.9. Let f be the stable map as in Notation 2.7. Then the limit underlying stable

map f
0

is given by the stabilization of F̃ . �

Proof. The proof is similar to that of [19, Proposition 2]. For completeness, we record

it below. Consider the family of underlying stable maps

h : Gm × C → X

given by the Gm-action. By Lemma 2.1, we could extend h to a morphism of usual

schemes:

h : A1 × (
C � {xi, j}

) → X.
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Irreducibility and Unirationality 9

Let S → A1 × C be a suitable blow-up along the isolated nonsingular points {0 × xij}, we

obtain a morphism

h′ : S → X.

Observe that the limit of t · f
(
xi, j

)
is x−

i as t �→ ∞. Hence the exceptional divisor

Ei, j of S → A1 × C over xi, j connects the two points x−
i and x− under the map h′.

Note that the torus action does not change the cross-ratio of the set of points

{xi, j}. By degree consideration, the curve class of h′|Ei, j is [Pi], and h′ (Ei, j
) = Pi as Pi is the

unique fixed curve joining x−
i and x− with respect to the chosen Gm-action.

After possibly further blow-ups and base changes over the fiber of 0 ∈ A1, we may

assume that S is non-singular, and each Ei, j is a normal crossings divisor. Thus, each

Ei, j has a single component mapped to Pi isomorphically, and all other components get

contracted by h′.

Blowing-down the h′-contracted components of each Ei, j, we obtain a morphism

h′′ : S′ → X which is a family of nodal curves over A1. From the above construction, the

fiber h′′|0 over 0 ∈ A1 is the stabilization of F̃ as required. �

We then summarize our discussion as the following proposition.

Proposition 2.10. Let f be the underlying stable map as in Notation 2.7. Then the lim-

iting underlying stable map f
0

is given by one of the following situations:

(1) F̃ is stable, and f
0
= F̃ ; or

(2)
∑

i ki = 1, n≤ 1, and f
0

is given by P1 → Pi with the marking mapped to x−; or

(3)
∑

i ki = 2, n= 0, and f
0

: P1 ∪ P1 → Pi ∪ Pj for some i, j, with the unique node

mapped to x−. �

Proof. This follows from Lemma 2.9, and taking the stabilization of F̃ . �

Finally, we introduce the following condition for the curve class β as in (2.2).

Assumption 2.11. ki = 0 as long as the color Di is not of type (b). �

Lemma 2.12. Under Assumption 2.11, the underlying stable map f
0

factors through the

center Y. �
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10 Q. Chen and Y. Zhu

Proof. This follows from the fact that the curve Pi = B · x−
i lies in Y as in Theorem 2.4

and Proposition 2.6. �

3 Specialization of Stable Log Maps

3.1 Uniqueness of the lifting

We have analyzed the specialization of the underlying stable map f in Notation 2.7

under the given Gm-action. Note that the underlying stable map f uniquely determines

a stable log map f . Thus by the properness of MΓ (X), such limit as stable log maps

exists, and is unique. But for our purposes, we need to understand all possible liftings

over the limiting underlying stable map in Notation 2.8 as a stable log maps. We first

show the following proposition.

Proposition 3.1. Let f
0

be a underlying stable map given by the stabilization of F̃ in

Notation 2.8. Under Assumption 2.11, there exists up to a unique isomorphism at most

one minimal stable log map f0, whose underlying stable map is given by f
0
. �

Assume such lifting f0 is given. We first calculate the possible characteristic

monoid M̄S with the given underlying stable map f
0
. Denote by M̄ := M̄Y,y for any point

y∈ Y ⊂ X. Recall from [13, Proposition 5.8] that there is a global morphism from the

globally constant sheaf of monoids:

γ : M̄→ M̄X (3.1)

such that

(1) γ lifts to a chart of MX Zariski locally on X;

(2) the restriction γ |Y : M̄→ M̄Y is an isomorphism of sheaves of monoids.

The minimal monoid is defined in the Deligne–Faltings case in [1, Section 4.1]

and for Zariski log structures in [14, Construction 1.16]. In what follows, we will mimic

[1, Section 4.1], and reformulate the minimal monoid in a slightly different manner for

the convenience of our argument. It should be straight forward to verify that the follow-

ing is equivalent to the definitions in [1, 14] in our particular case.

Construction 3.2. Denote by Φ the dual graph of the underlying curve C 0. This means

that Φ is a connected graph with the set of vertices V
(
Φ

)
given by the irreducible com-

ponents of C 0 and the set of edges E
(
Φ

)
given by the nodes of C 0. For each v ∈ V

(
Φ

)
and

e ∈ E
(
Φ

)
, denote by Z v and pv the irreducible component and node, respectively. Denote
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Irreducibility and Unirationality 11

by Φ the marked graph obtained by decorating Φ with the following data:

(1) For each v ∈ V
(
Φ

)
we associate the monoid M̄v := M̄.

(2) For each e ∈ E
(
Φ

)
we associate the free monoid Ne

∼= N. We use e to denote

the generator of Ne.

(3) We fix an orientation on the graph as follows. If f
0
= F̃ , then each edge e is

oriented from the teeth Pi j to the handle C . Otherwise, C 0 has at most two

components, in which case we fix an arbitrary orientation of the unique edge.

(4) For each edge e orienting from v1 to v2, denote by ce ∈ (
M̄∨)gp

the γ -contact

order of the one cycle
(

f
0

)
∗

Zv1 as in [13, Definition 3.4]. In particular,

ce defines a group morphism M̄gp → Z.

Now for each edge e orienting from v1 to v2, and each element δ ∈ M̄gp, we intro-

duce the relation

δv1 + ce (δ) · e = δv2 (3.2)

where δvi denotes the element in M̄gp
vi given by δ. Denote by M̄ (Φ)gp the lattice given by∑

e N
gp
e ⊕ ∑

v M̄
gp
v modulo the relations (3.2) for all e. We thus have a natural morphism

ψ :
∑

e

Ne ⊕
∑
v

M̄v → M̄ (Φ) . (3.3)

Denote by M̄ (Φ)+Q the rational cone generated by the image of φ in M̄ (Φ)Q :=
M̄ (Φ)⊗Z Q. Then we write

M̄ (Φ) := M̄ (Φ)gp ∩ M̄ (Φ)+Q . (3.4)

�

Lemma 3.3. Notations and assumptions as above, assume f
0

lifts to a minimal stable

log map f0. Then we have

(1) M̄S = M̄ (Φ), and

(2) a natural splitting M̄ (Φ)gp = M̄gp ⊕ ∑
e N

gp
e . �

Proof. Note that the possibilities of f
0

are listed in Proposition 2.10. For an edge e

orienting from v1 to v2, there is no marking on Z v1
. Thus, the contact order of the node

pe is given by ce. Now the first statement follows from the definition of minimality in

[1, Section 4] or [14, Construction 1.16].

Consider the second statement. We first assume that f
0
= F̃ . Consider the vertex

v0 associated to the handle of C 0. Then for any other vertex v, there is a unique edge e
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12 Q. Chen and Y. Zhu

orienting from v to v0. Then the relation (3.2) uniquely expresses δv = δv0 − ce (δ) · e for any

δ, which proves (2) in this case. The two other cases in Proposition 2.10 can be proved

similarly. �

Proof of Proposition 3.1. By Lemma 3.3 and (3.3), we have the canonical map of

monoids:

ψe :
∑

e

Ne → M̄ (Φ) .

Denote by C �

0 → S� the canonical log curve associated to the underlying curve C 0. We

then fix a chart γ � :
∑

e Ne →MS� . Since C0 → S is obtained by pulling back C �

0 → S�, and

S is a geometric point, we may assume that

MS = M̄ (Φ)⊕ψe,
∑

e Ne,γ � MS� . (3.5)

This naturally associated with a morphism of log structures MS� →MS, which is unique

up to a unique isomorphism by Lemma 3.3(2). This defines the log curve C0 → S up to a

unique isomorphism together with a chart γS : M̄ (Φ)→MS.

Now assume that we have two liftings f01 : C0/S → X and f02 : C0/S → X over f
0
.

We need to verify that f01 and f02 is differ by an isomorphism of C0/S. We first note

that the two morphisms f̄ �01 = f̄ �02 : f∗
0
M̄X → M̄C0 on the level of characteristic monoids

coincide. This is because the discrete data of f01 and f02 are given by the same marked

graph Φ. We may denote both f̄ �01 and f̄ �02 by f̄ �0 .

Next consider the quotients qX :MX → M̄X and qC0 : MC0 → M̄X0 . For any δ ∈ M̄,

denote by

TX (δ) := q−1
X (γ (δ)) and TC0 (δ) := q−1

C0

(
f̄ �0 ◦ γ (δ)

)
(3.6)

the two O∗-torsors over C 0. For each i, we obtain an isomorphism of torsors:

f �0i|TX(δ) : TX (δ)→ TC0 (δ) , (3.7)

induced by the corresponding morphisms of log structures. Since those are isomor-

phisms of the same torsors over a proper curve, we have

f �01|TX(δ) = log uδ + f �02|TX(δ) (3.8)

for a non-zero constant uδ uniquely determined by δ, f01, and f02. This defines a map of

sets:

hgp : M̄gp → C∗.
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Irreducibility and Unirationality 13

In particular, h is a morphism of groups.

By Lemma 3.3(2), the chart γS induces a morphism of groups

γ
gp
S : M̄gp ⊕

∑
e

Ngp
e →MS

Then we obtain a morphism of groups

h̃gp :Mgp
S →Mgp

S

such that h̃gp|O∗ = idO∗ , h̃gp|γ gp
S (

∑
Ne) = idγ gp

S (
∑

Ne), and h̃gp
(
γ

gp
S (δ)

) = log h(δ)+ γ
gp
S (δ) for

any δ ∈ M̄. Thus the restriction h̃ := h̃gp|MS defines an isomorphism of the log structure

MS. Furthermore, since h̃ fixes the image γS
(∑

e Ne
)
, it induces an isomorphism of the

log curve C0/S. Denote by h̃C0 :MC0 →MC0 the isomorphism induced by h̃. Then (3.8) and

the construction of h̃ imply that

f �01 = f �02 ◦ h̃C0 .

Thus the log maps f01 and f02 is differ by an isomorphism of C0/S. The uniqueness of h̃

follows from the uniqueness of uδ as in (3.8). �

3.2 Existence of the lifting

The proof of Proposition 3.1 can be modified to show the existence of lifting as follows.

Lemma 3.4. Assume MΓ (X) 
= ∅, and the curve class β satisfies Assumption 2.11. For

each underlying stable map f
0

given by the stabilization of F̃ in Notation 2.8 with dis-

crete data Γ , there exist a unique stable log map [ f0] ∈ MΓ (X) above f
0

with discrete

data Γ . �

Proof. The proof of this statement is similar to the construction in [13, Section 4.2].

We first observe that there exists a stable log map realizing the marked graph Φ.

Indeed, this follows from the condition MΓ (X) 
= ∅, the properness of MΓ (X) 
= ∅, and

the specialization of non-degenerate stable maps in Section 2.3.

Note that the discrete data of f0 is uniquely determined by the marked graph

Φ associated to underlying stable map f
0

as in Construction 3.2. This implies that the

monoid in (3.4) is sharp. The same construction in (3.5) uniquely determines the log

curve C0/S up to a unique isomorphism. Since the underlying stable map is given, it

remains to construct morphism of log structures f �0 : f∗
0
MX →MC0 . Since on the level of
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14 Q. Chen and Y. Zhu

characteristic sheaves monoids, the morphism f̄ �0 : f∗
0
M̄X → M̄C0 has been determined

by the graph Φ, it suffices to construct
(

f �0
)gp

: f∗
0
Mgp

X →Mgp
C0

.

Note that the discrete data determines f̄ �0 hence the torsors as in (3.6). Simi-

larly as in (3.7), given
(

f �0
)gp

is equivalent to construct isomorphisms of torsors for each

δ ∈ M̄gp. Hence to construct
(

f �0
)gp

, it suffices to find a collection of isomorphisms of tor-

sors for each δ in a basis of M̄gp. Note that an isomorphism of two O∗-torsors over genus

zero curves exists if and only if the degree of the torsors are compatible component-wise.

Such compatibility only depends again on the discrete data in Construction 3.2, and fol-

lows from the existence of stable log maps realizing the marked graph Φ. This proves

the existence. �

4 Irreducibility and Unirationality

4.1 The irreducibility

Lemma 4.1. Let f : C → X be a genus zero stable log map with discrete data Γ . Assume

that C is irreducible, and f (C ) ∩ G/H 
= ∅. Then there is a non-empty open subset V ⊂ G

such that for any g ∈ V , the composition g ◦ f is a Γ -stable log map with the underlying

map g ◦ f satisfying the conditions in Notation 2.7. �

Proof. First consider the open curve C ◦ = C � {qj} by removing markings with non-

trivial contact orders. Then the restriction f |C ◦ factors through G/H ⊂ X. By Kleiman–

Bertini Theorem [15, Theorem 10.8], there is an open dense V ⊂ G, such that for any g ∈ V

the restriction g ◦ f |C ◦ satisfies the conditions (2) and (3) in Notation 2.7.

We note that for each contact marking qj, its image lies in a G-orbit, say O j. Since

the complement of X− ∩ O j in O j is of codimension greater or equal than one. Applying

Kleiman–Bertini Theorem again, condition (4) can be achieved for contact markings by

further shrinking V . �

Consider the following condition:

n+
∑

ki ≥ 4. (4.1)

Under this assumption, the map F̃ in Notation 2.8 is stable. Consider the quasi-

projective variety

M = M0,n+∑
i ki (4.2)
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Irreducibility and Unirationality 15

parameterizing
(
n+ ∑

i ki
)
-distinct points over a smooth genus zero curves. The mark-

ings are labeled by

p1, . . . , pn; x1,1, . . . , x1,k1; · · · ; xl,1, . . . , xl,kl .

Let Ski be the symmetric group acting on M by permuting the markings

xi,1, . . . , xi,ki . Denote by B = M/S the quotient with S given by the product

S = Sk1 × · · · × Skl . (4.3)

As observed in [19, Section 4], when
∑

i ki ≥ 3 the quotient B is birational to the

quotient

P
(
Symk1 V∗) × · · · × P

(
Symkl V∗) //PGL (V) ,

where the latter is rational by [6, 16].

Proposition 4.2. Assume MΓ (X) 
= ∅ and (4.1). Under Assumption 2.11, there is a unique

locally closed embedding F : B → MΓ (X) which sends a marked genus zero curve C

to the stable log map f0 over the underlying stable map F̃ as in Notation 2.8 with

handle C . �

Proof. Let M (Φ)⊂ MΓ (X) be locally closed substack consisting of stable log maps

with the marked graph Φ as in Construction 3.2. Consider the stratification of MΓ (X)

with respect to its log structure as in [24, Lemma 3.5 (ii)]. Then we observe that M (Φ) is

a stratum of MΓ (X) such that the characteristic sheaf M̄MΓ (X) is locally constant along

M (Φ). Since MΓ (X) is log smooth, the stratum M (Φ) has smooth underlying structure.

Let Mλ,∞ ⊂ M (Φ) be the torus fixed locus consisting of the limits of general

stable log maps as in Notation 2.7 with respect to the chosen the torus action. Since

M (Φ) has smooth underlying structure, Mλ,∞ also has smooth underlying structure.

Lemma 3.4 implies the tautological morphism

G : Mλ,∞ → B

between two smooth stacks are one-to-one on the level of closed points.

We then observe that Mλ,∞ is irreducible. Indeed, since MΓ (X) is of finite type,

and Mλ,∞ is smooth, there is a unique irreducible component M′
λ,∞ ⊂ Mλ,∞ such that

G|M′
λ,∞ is dominant. Assume we have an object [ f ] ∈ Mλ,∞ � M′

λ,∞ given by a closed point.

Since B is irreducible, and G is one-to-one on the level of closed points, there is an

object fS over S = SpecR where R is a discrete valuation ring, η ∈ S is the generic point,

and s ∈ S is the closed point, such that fη is an object in M′
λ,∞ and the central fiber fs
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16 Q. Chen and Y. Zhu

has the underlying map given by that of f . It follows from Lemma 3.4 that fs = f . This

implies that M′
λ,∞ = Mλ,∞.

Denote by M ⊂ Mλ,∞ the fiber over the automorphism free locus of B. Then the

restriction G|M is representable by the representability of [1, Corollary 3.13], since in

this case the underlying stable maps of the log maps in Mλ,∞ is automorphism free.

The cases when B has stacky locus only occur when the equality in (4.1) holds.

Since B parametrizes the underlying stable maps of the log maps in Mλ,∞, the stackyness

of B corresponding to the automorphism of the underlying stable maps. Note that this

automorphism comes from subgroups of (4.3), hence preserves the discrete data of Φ.

Thus we could lift the automorphism of the underlying stable maps to the correspond-

ing log stable maps. One could also see the existence of such lifting of automorphisms

from the quotient construction using the rigidification (4.4) in the next section. Thus the

morphism G induces an isomorphism of the automorphism groups. This implies that G
is an isomorphism, whose inverse is the embedding F as in the statement. �

Proposition 4.3. Under Assumption 2.11 for the curve class β, the moduli space MΓ (X)

is irreducible. �

Proof. Since MΓ (X) is log smooth, the irreducibility of MΓ (X) is equivalent to the

connectedness.

Note that the open substack M◦
Γ (X)⊂ MΓ (X) consisting of the points with

trivial log structure is dense in MΓ (X). Thus, by Lemma 4.1, any stable log map

[ f ′] ∈ MΓ (X) deforms to a stable log map [ f ] satisfying the conditions in Notation 2.7.

When n+ ∑
i ki ≤ 3, the log map [ f ] flows into a unique (possibly stacky) point under the

Gm-action. When n+ ∑
i ki ≥ 4, the log map [ f ] flows into a point in the connected locus

F (B)⊂ MΓ (X) by Proposition 4.2. This proves the irreducibility. �

4.2 The unirationality

Denote by Mλ,∞ ⊂ MΓ (X) the locally closed substack with underlying stable maps given

by Proposition 2.10. Then Mλ,∞ is in the torus fixed locus. Consider the open substack

Mλ :=
{

f ∈ MΓ (X) | lim
t�→∞ t[ f ] ∈ Mλ,∞

}
.

Then Mλ is an irreducible log smooth stack. This means that the underlying stack of Mλ

has possibly toric singularities. To analyze the toric singularities, we first replace Mλ by

an étale cover to remove the monodromy of the log structure along the fixed locus Mλ,∞
as follows.
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Irreducibility and Unirationality 17

Consider the discrete data Γ ′ obtained by adding extra markings

x1,1, . . . , x1,k1; . . . ; xl,1, . . . , xl,kl (4.4)

to Γ with trivial contact orders. Denote by MΓ ′ (X)0 ⊂ MΓ ′ (X) the dense open substack

of automorphism free locus. We consider the locally closed substack

M′ ⊂ MΓ ′ (X)0 (4.5)

such that any maps f in M′ intersects Di transversally at the markings

xi,1, . . . , xi,ki .

We observe that M′ is log smooth, and the stack quotient [M′/S] is birational to Mλ,

where the symmetry group S acts by permuting the markings (4.4) as in (4.3).

Consider the torus action on M′ induced by λ. Denote by

M′
λ,∞ ⊂ M′

the closed substack consisting of underlying stable maps as in Proposition 2.10 with

the extra markings (4.4) given by the intersection points with Di for all i. It is not hard

to check that M′
λ,∞ is an open substack of a component of the fixed loci of M′ under the

torus action λ. A similar proof as in the case of Mλ,∞ shows the following lemma.

Lemma 4.4. When (4.1) holds, the underlying structure of M′
λ,∞ is given by M as in (4.2).

Otherwise, M′
λ,∞ is a single non-stacky point. �

Note that we have an étale strict morphism

M′
λ,∞ → Mλ,∞ (4.6)

by forgetting the extra marking (4.4). Furthermore, this morphism removes the mon-

odromy of the log structure as follows.

Lemma 4.5. The minimal log structure on M′
λ,∞ is defined over Zariski site. �

Proof. Since any log structure on a geometric point is Zariski, it suffices to prove the

statement under the assumption (4.1). For simplicity, we write S = M′
λ,∞.

By Lemma 3.3 and the strictness of (4.6), the sheaf of groups M̄gp
S is a locally

constant sheaf on S. To proof the statement, it suffices to verify that M̄gp
S , hence M̄S is

globally constant. Denote by fS : CS/S → X the universal family of stable log maps over S.

 at U
niversity of W

aterloo on O
ctober 30, 2015

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


18 Q. Chen and Y. Zhu

Let σ ⊂ CS be the section over S given by a fixed special point on the handle of each fiber.

Note that σ could be either node or marking. We next assume σ is a node. The case σ is

a marking can be proved similarly.

Let C�S → S� the canonical log structure associated to the underlying family of

CS → S. By Lemma 4.4, both MC�S
and MS� are Zariski. In fact, M̄S� = ∑

e Ne is a globally

constant sheaf given by the product of the canonical log structure smoothing each node

of the underlying family CS → S by [25], Hence M̄C�S
|σ is a globally constant sheaf of

monoids of the form:

M̄C�S
|σ =

∑
e
=σ

Ne ⊕ N2.

Then we have

M̄CS |σ = M̄S ⊕Nσ
N2. (4.7)

Now the morphism of sheaves of groups:

(
f̄ �S

)gp
|σ : f∗

SM̄
gp
X |σ → M̄gp

CS
|σ

is given by
(

f̄ �S
)gp

|σ (δ)= aδ + bδ where aδ ∈ M̄S and bδ ∈ N2 such that bδ is a globally con-

stant section of the form (b,0) or (0,b) in N2. Consider the composition

f∗
SM̄

gp
X |σ ⊕ M̄gp

S�
�� M̄gp

CS
|σ �� M̄gp

S (4.8)

where the second arrow is given by the projection induced by aδ + bδ �→ aδ. Using

Lemma 3.3(2) and (3.2), we verify that (4.8) is an isomorphism over each fiber, hence

is an isomorphism of sheaves of groups. On the other hand, since both M̄gp
X and M̄gp

S�

are globally constant, this implies that M̄gp
S is also globally constant. This finishes the

proof. �

Choose the open substack of M′:

M′
λ :=

{
f ∈ M′ | lim

t�→∞ t[ f ] ∈ M′
λ,∞

}
.

Since M′
λ is an irreducible, log smooth variety, by [3, 23], we may take the projective

resolution

φ : Mres → M′
λ (4.9)

by a sequence of log étale blow-ups.

Lemma 4.6. The resolution φ can be chosen to be Gm-equivariant. �
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Irreducibility and Unirationality 19

Proof. This can be seen from the construction of [3]. In fact, we may construct φ by

first taking a barycentric subdivision as in [3, Section 4.3], which is Gm-equivariant

since the log structure of M′
λ is stable under the torus action. Then by [3, Lemma 4.4.1],

we may further construct φ by resolving the toric singularities Zariski locally over the

barycentric subdivision as above, which is again Gm-equivariant. �

Let Mres
∞ ⊂ Mres be the irreducible subvariety consisting of the Gm-limits of gen-

eral points in Mres as t �→ ∞. Then φ
(
Mres

∞
) ⊂ Mλ,∞. By [5], Mres hence M′ is birational to

a vector bundle over Mres
∞ .

Lemma 4.7. Mres
∞ is rational. �

Proof. Consider any reduced irreducible stratum S of

Mres ×M′
λ
M′

λ,∞

with M̄S a locally constant sheaf of monoids on S. Observe that S is stable under the

torus action. In fact, consider the projection

π : S → M′
λ,∞.

Then for any point y∈ M′
λ,∞, the fiber π−1 (y) is a toric variety with its toric boundary

given by the strata defined by the log structure on S. The torus action given by λ on

π−1 (y) is compatible with the torus action of the toric variety, since the resolution (4.9)

is locally given by toric blow-ups. Thus Mres
∞ is given by some stratum S as above.

Consider the projection ϕ : Mres
∞ → M′

λ,∞. By further restricting to a Zariski open

set of M′
λ,∞, we may assume ϕ is smooth. We next verify that ϕ defines a Zariski locally

trivial family of toric varieties.

Let A1 and A2 be the Artin fan of M′
λ and M′

λ,∞, respectively [3, Section 3.2].

Since Artin fans in the initial factorization [3, Proposition 3.1.1], we have the following

commutative diagram:

M′
λ,∞ ��

��

M′
λ

��

A2
�� A1.

The resolution (4.9) is obtained via the subdivision A′
1 →A1 as in [3, Section 3.17].

This induces the subdivision A′
2 :=A′

1 ×A1 A2 →A2 by [3, Proposition 3.16]. Since the
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20 Q. Chen and Y. Zhu

log structure on M′
λ,∞ is Zariski by Lemma 4.5, the Artin fan is of the form

A2 = [SpecC[N]/SpecC[Ngp]]

where N is the characteristic monoid over M′
λ,∞. Thus the subdivision A′

2 is obtained by

a sequence of toric blow-ups of A2. Since

Mres ×M′
λ
M′

λ,∞ =A′
2 ×A2 M′

λ,∞,

by Lemma 4.5 we find φ is a family of toric varieties which admits a Zariski local trivi-

alization. Finally, the statement follows from the rationality of M and Lemma 4.4. �

Summing up the above argument, we have the following proposition.

Proposition 4.8. Under Assumption 2.11 for the curve class β, the stack MΓ (X) is bira-

tional to a quotient of the rational variety M′ by the product of symmetric groups S as

in (4.3). �

This concludes the proof of unirationality in Theorem 1.1.

Corollary 4.9. Assume that ki ≤ 1 for all i in (2.2), and Assumption 2.11 holds. Then

MΓ (X) is rational. �

Proof. Under the assumption of the statement, the group S is trivial. �
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[9] Brion, M. “Construction of equivariant vector bundles.” Algebraic groups and homogeneous

spaces, 83–111. Tata Inst. Fund. Res. Stud. Math. Mumbai: Tata Institute of Fundamental

Research, 2007.

[10] Brion, M. “Spherical Varieties.” Highlights in Lie Algebraic Methods, 3–24. Progr. Math. 295.
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