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1. Introduction

From the point of view of birational geometry, A1 curves play the roles for log varieties 
as rational curves do for projective varieties. However, much less is known in the log 
world, even in two dimensional case. A1 curves on log varieties with negative log Kodaira 
dimension are studied in [13,9,3,4,18]. We are interested in A1 curves on log surfaces of 
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Calabi–Yau type, namely, log K3 surfaces. They play important roles in the recent work 
of M. Gross, P. Hacking, S. Keel and M. Kontsevich on mirror symmetry for log K3 
surfaces [5,6].

Inspired by the recent progress on the existence of countably many rational curves on 
a projective K3 surface ([1,2] and [11]), we propose the following question studying A1

curves on log K3 surfaces classified by S. Iitaka [8] and D.Q. Zhang [17].

Question 1.1. For which log K3 surfaces (X, D), are there infinitely many A1 curves on 
X\D?

A log K3 surface, in the sense of Iitaka, is a log smooth projective pair (X, D) satisfying 
h0(KX + D) = 1 and κ(X, D) = q(X, D) = 0. According to Iitaka’s classification, there 
are two types of log K3’s:

Type I: X is birational to a projective K3 surface;
Type II: X is a smooth projective rational surface.

In this paper, we are mainly interested in a special class of log K3 surfaces:

Definition 1.2. A genuine log K3 surface is a log smooth projective surface pair (X, D)
such that

(1) KX + D = 0 in Pic(X);
(2) q(X, D) = h0(Ω1

X(logD)) = 0.

In Iitaka’s classification, genuine log K3 surfaces serve as the building blocks of log 
K3 surfaces. Of course, a genuine log K3 surface of type I is simply a projective K3 
surface without boundary. It has been proved by J. Li and C. Liedtke that there are 
infinitely many rational curves on almost every projective K3 surface X (provided that 
rankZ Pic(X) is odd or rankZ Pic(X) ≥ 5 or X has an elliptic fiberation) [11]. So we have 
a nearly complete answer to Question 1.1 for genuine log K3’s of type I. In this paper, 
we study this question for genuine log K3’s of type II.

Since the existence of A1 curves is essentially a property of the open part X\D of a 
log variety (X, D), we consider (X1, D1) and (X2, D2) to be log isomorphic if there exists 
a birational map f : X1 ��� X2 inducing an isomorphism f : X1\D1 ∼= X2\D2 and we 
call such f a log isomorphism. For genuine log K3’s of type II, we have the following 
classification under log isomorphisms.

Theorem 1.3. Every genuine log K3 surface (X, D) of type II is log isomorphic to one of 
the following genuine log K3 surfaces (X̂, D̂):
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C0. D̂ is a smooth elliptic curve;
C1. D̂ is a nodal rational curve;
C2. D̂ = D̂1 + D̂2 + ... + D̂n is a circular boundary (see below) satisfying D̂2

i ≤ −2 for 
i �= 1 and D̂2

1 �= 0, −1;
C3. D̂ = D̂1 + D̂2 is a circular boundary satisfying D̂2

1 �= −1 and D̂2
2 = 0;

C4. D̂ = D̂1 + D̂2 is a circular boundary satisfying D̂2
1 > 0 and D̂2

2 > 0.

We have a complete answer to Question 1.1 for genuine log K3 surfaces (X, D) of 
Iitaka type II by our main theorem:

Theorem 1.4 (A1 curves on genuine log K3’s of Iitaka type II). Let (X, D) be a genuine 
log K3 surface of type II. Then there are countably many A1 curves in X\D if and only 
if (X, D) is log isomorphic to one of C0–C3 in Theorem 1.3.

It is relatively easier to prove the existence of infinitely many A1 curves on (X, D)
of type C0, C1 and C3 compared with C2. For (X, D) of type C2, we can contract 
D2 +D3 + ... +Dn to obtain a log del Pezzo surface X, i.e., a projective surface with at 
worst log terminal singularities and −KX ample. Here is where the celebrated theorem 
of Keel–McKernan comes in: X is rationally connected [9]. We will use this to show that 
there are infinitely many A1 curves in X\D.

As suggested to us by David McKinnon, our construction of A1 curves on log K3 
surfaces over number fields actually produce an infinite sequence of A1 curves defined 
over number fields of increasing degrees over Q.

Theorem 1.5. For a genuine log K3 surface (X, D) over Q where D is either a smooth 
elliptic curve or a rational curve with one node, there does not exist a number field k ⊂ Q

such that every A1 curve in X\D is defined over k.

Note that for a log K3 surface (X, D) over Q, every A1 curve in XC\DC is automati-
cally defined over Q due to rigidity (see Lemma 3.4).

The similar statement for rational curves on K3 surfaces over number fields is expected 
but not known, to the best of our knowledge. Although J. Li and C. Liedtke proved that 
almost all K3 surfaces over number fields have infinitely many rational curves, it is not 
clear that the rational curves they produced lie over an ascending chain of number fields.

The paper is organized as follows. In §3, we deal with genuine log K3 surfaces (X, D)
of type C0 and C1 and prove the existence of infinitely many A1 curves and Theorem 1.5
for such (X, D). Theorem 1.3 is proved in §2 and our main Theorem 1.4 is proved in §4. 
In §5, we put our results under the framework of Iitaka’s classification of log K3 surfaces 
and give examples of genuine log K3 surfaces that do not have infinitely many A1 curves.
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1.1. Remarks on Question 1.1

Question 1.1 is very difficult in general. For example, we do not know the case when 
(X, D) is obtained from the blowup π : X → S of a K3 surface S at finitely many 
points Σ with D the exceptional divisor of π; finding A1 curves in X\D amounts to 
finding rational curves on S missing all but one point in Σ, which turns out to be a 
surprisingly difficult problem. An affirmative answer would generalize the theorem of 
Li–Lietke [11]. On the other hand, there are log K3 surfaces with no log rational curves 
at all. For example, let X be a Kummer K3 and let D be the disjoint union of 16 
(−2)-curves. Then (X, D) is a log K3 with no A1 curves because X\D has an étale cover 
by an abelian surface deleting 16 points. Also there are many examples of genuine log 
K3 surfaces of type II without infinitely many A1 curves (see §5). This suggests that the 
condition on the vanishing of log irregularity is too weak to ensure the existence of A1

curves.

1.2. Convention and terminology

We work exclusively over algebraically closed fields of characteristic 0. Throughout 
the paper, “countable” means “countably infinite”.

A log pair (X, D) means a variety X with a reduced Weil divisor D. Let U be its 
interior X − D. We say that (X, D) is log smooth if X is smooth and D is a normal 
crossing divisor. A log pair is projective if the ambient variety is projective.

For a log smooth pair (X, D), we use κ(X, D) to denote the logarithmic Ko-
daira dimension and q(X, D) to denote the logarithmic irregularity, i.e., q(X, D) =
h0(X, Ω1

X(logD)). They only depend on the interior of the pair.
An A1 (or log rational) curve C◦ in X\D is a quasi-projective curve whose normal-

ization is A1. Alternatively, the closure C of C◦ in X is a rational curve satisfying that 
ν−1(D) consists of at most one point for the normalization ν : Cν → X of C.

It is easy to see that a genuine log K3 surface (X, D) of type II must be one of the 
following:

(1) D is a smooth elliptic curve.
(2) D is a rational curve with one node.
(3) D is a union of smooth rational curves with simple normal crossings (snc) whose 

dual graph is a “circle”, called a “circular boundary” by Iitaka. That is, we have 
D = D1 + D2 + ... + Dn such that

Di(D −Di) = 2 for all i

DiDj = 0 for i− j �≡ 0,±1 (mod n).
(1.1)

We call such D a circular boundary of type (λ1, λ2, ..., λn) if D2
i = λi.
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Fig. 1. A pivot π : (X,D) ��� (X,D) at D1.

For a log surface (X, D) with X smooth and D a nc divisor, a canonical blowup
f : (X̂, D̂) → (X, D) is the blowup of X at a singular point p ∈ Dsing of D with 
D̂ = f−1(D) and a canonical blowdown g : (X, D) → (X, D) is the contraction of a 
(−1)-curve contained in D with D = g∗D.

2. Proof of Theorem 1.3

The key construction here is a “pivot operation”, which is also needed in the proof of 
our main theorem.

Proof Theorem 1.3. We use the notation μ(G) to denote the number of irreducible com-
ponents in a curve G. We will argue by induction on μ(D).

If μ(D) = 1, D must be a smooth elliptic curve or a nodal rational curve and we have 
C0 or C1.

Suppose that D = D1+D2+... +Dn is a circular boundary of type (λ1, λ2, ..., λn) with 
D2

i = λi. If D contains a (−1)-curve Di, we simply let π : X → X be the contraction 
of Di. Obviously, π is a log isomorphism and we have reduced μ(D) by 1. Suppose that 
λi �= −1 for all i.

Suppose that μ(D) = 2. If λ1 = 0 or λ2 = 0, we have C3. Suppose that λi �= 0. If 
λ1 ≤ −2 or λ2 ≤ −2, we have C2. Otherwise, λ1, λ2 > 0 and we have C4.

Suppose that μ(D) = n ≥ 3. If λi ≤ −2 for all but one i, we are done. Let us assume 
that there are at least two nonnegative λi’s.

Suppose that one of λi’s vanishes, say λ1 = 0. We have a log isomorphism π :
(X, D) ��� (X, D) composed of a blowup of X at D1 ∩ D2 followed by a blowdown 
of the proper transform of D1. On X, we have D

2
n = λn + 1, D2

1 = 0 and D
2
2 = λ2 − 1

if n ≥ 3. We call such π a pivot at D1 (see Fig. 1). When n ≥ 3, applying a sequence 
of pivot operations at D1, we arrive at (X, D) with D a circular boundary of type 
(0, −1, λ3, ..., λn−1, λn + λ2 + 1); we then contract D2, which will reduce μ(D) by 1.
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Finally, we have the remaining case that λi �= 0, −1 for all i, at least two of λi’s are 
positive and μ(D) ≥ 3. Suppose that λi, λj > 0 for some i �= j. Since [8, Lemma 2, 
p. 682]

q(X,D) = dimQ ker
(

n⊕
i=1

QDi → H2(X,Q)
)

(2.1)

and q(X, D) = 0 as (X, D) is a log K3 surface, D1, D2, ..., Dn must be linearly inde-
pendent in H2(X, Q). In particular, Di and Dj are linearly independent in H2(X, Q). 
Combining with the Hodge index theorem [12, Lem. 1.10.2] and X is rational, we see 
that

det
[

D2
i DiDj

DiDj D2
j

]
= det

[
λi DiDj

DiDj λj

]
< 0. (2.2)

It follows that DiDj ≥ 2. And since the dual graph of D1, D2, ..., Dn is a circle, we 
conclude that Di and Dj are the only components of D, i.e., DiDj = 2 and n = 2. 
Contradiction. �
3. Irreducible boundary case

We are going to prove the following result in this section.

Theorem 3.1. For a genuine log K3 surface (X, D) of type II where D is either a smooth 
elliptic curve or a rational curve with one node, there are countably many A1 curves in 
X\D.

Namely, we will prove that there are countably many A1 curves on a genuine log K3 
of type C0 or C1.

Let us first revisit the following theorem of Geng Xu [16]:

Theorem 3.2 (G. Xu). Given a smooth cubic curve D in P2, there are countably many 
rational curves in P2 meeting D set-theoretically at a unique point.

Sketch of Xu’s Proof. It is easy to show that there are at most countably many rational 
curves meeting D at a unique point. Roughly, if there is a complete one-parameter family 
of such rational curves, some fiber of the family must contain D, which is impossible.

Let VA,g be the Severi variety of integral curves in |A| of genus g and V A,g be its 
closure in |A| = PH0(A). It is well known that

dimVA,0 = A.D − 1 = a− 1. (3.1)

The key to produce infinitely many such rational curves is the following observation: For 
every ample divisor A on X = P2, there exists a point p ∈ D such that
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ap = i∗DA in Pic(D) and mp /∈ i∗D Pic(X) for all 0 < m < a (3.2)

where a = A.D, iD is the embedding D ↪→ X and i∗D : Pic(X) → Pic(D) is the pullback 
between the Picard groups of X and D.

Let Λ ⊂ PH0(A) be the subvariety consisting of C ∈ |A| such that C meets D at 
p with multiplicity a. Then Λ is a linear subspace of PH0(A) of codimension a − 1. So 
V A,0 ∩ Λ �= ∅. Let C ∈ V A,0 ∩ Λ. Then every component of C is rational and hence 
D �⊂ C. So C meets D properly at p with multiplicity a. By our choice of p, C must be 
integral. �

Note that the rational curves meeting D set-theoretically at a single point are not 
necessarily A1 curves in X\D: for C ∈ V A,0∩Λ in Xu’s proof, there is no guarantee that 
ν−1(p) consists of a single point on the normalization Cν of C. Indeed, the computation 
of the corresponding Gromov–Witten invariants suggests that A1 curves form a proper 
subset of V A,0 ∩ Λ [15].

So we need to adapt Xu’s argument to A1 curves. There are two main ingredients 
of Xu’s argument. One is (3.1), which guarantees that there are “sufficiently many” 
rational curves on X. The other is (3.2). His argument can be described by the phrase 
“bend-and-not-break”: as he bends the rational curves in VA,0 to meet D at p with 
multiplicity a, the condition (3.2) guarantees that the resulting curves do not break. 
Both (3.1) and (3.2) are also crucial to our argument. We have the following weak 
generalization of (3.2).

Lemma 3.3. Let D be a smooth elliptic curve or a nodal rational curve of arithmetic 
genus pa(D) = 1 on a projective variety X with the property that i∗D Pic(X) is finitely 
generated over Z. For every A ∈ Pic(X) with a = AD ∈ Z+, there exists a point p ∈ Dsm

satisfying

ap = i∗DA in Pic(D) and

mp /∈ G = i∗D Pic(X) for all m ∈ Z+ and m <

√
a

|Gtors|
(3.3)

where Gtors is the torsion part of G = i∗D Pic(X) and Dsm is the smooth locus of D.

Proof. Since torsions of all orders exist in Pic(D), we can find two points p1 and p2 on 
Dsm such that ap1 = ap2 = i∗DA and p1 − p2 is torsion in Pic(D) of order exactly a. 
Suppose that (3.3) fails for both pi. Then there exist positive integers k1 and k2 such that 
k2
i l < a and kipi ∈ G for i = 1, 2, where l = |Gtors|. Then k1k2l < a and k1k2(p1−p2) ∈ G. 

On the other hand, k1k2(p1 − p2) is torsion of order ≥ a/(k1k2) > l. Contradiction. �
Now we are ready to prove Theorem 3.1.
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Proof of Theorem 3.1. It is well known that there are at most countably many A1 curves 
in X\D if KX + D is pseudo-effective (also see Lemma 3.4 below).

Since KX + D = 0, E.D = 1 for every (−1)-curve E ⊂ X. So if we contract a 
(−1)-curve E with g : X → X, we see that KX + D = 0, D = g∗D remains a smooth 
elliptic or nodal rational curve and (X, D) remains a genuine log K3. By contracting a 
sequence of (−1)-curves, we arrive at a minimal rational surface X. That is, there exists 
a birational morphism g : X → X with D = g∗D such that X is a minimal rational 
surface and D ∈ | −KX | is a smooth elliptic or rational nodal curve. By classification of 
surfaces, X must be P2 or a Hirzebruch surface Fβ = P(OP1 ⊕OP1(β)) over P1 for some 
β �= 1. And since | −KX | has an irreducible member, X must be one of P2, F0 and F2. 
Let us replace (X, D) by (X, D).

One key step of our proof is to find a fiberation f : X → P1 whose general fibers 
are P1. Such fiberation obviously exists for X ∼= F0 or F2 but does not for X ∼= P2.

When X ∼= P2, we let π : X̂ → X be the cyclic triple cover of X ramified over D and 
let D̂ = π−1(D). Clearly, if there are infinitely many A1 curves in X̂\D̂, the same holds 
for X\D. Note that X̂ is a smooth cubic surface when D is smooth and a cubic surface 
with an A2 singularity when D is a nodal cubic. Also note that the node of D̂ is the 
same as the A2 singularity of X̂, i.e., X̂sing = D̂sing.

It is easy to see that such a cubic surface X̂ admits a fiberation f : X̂ → P1 with 
general fibers P1. Let L ⊂ X be a tri-tangent line to D at a smooth point; then π−1(L) =
E1+E2+E3 is the union of three (−1)-curves Ei ⊂ X̂ meeting at one point and |E1+E2|
is a pencil which gives us the map f : X̂ → P1. Furthermore, if we choose another 
tri-tangent line L′ ⊂ X to D with π−1(L′) = E′

1 + E′
2 + E′

3, then there exists one E′
i

intersecting E1 +E2 only at one point. Such E′
i gives a section of f disjoint from the A2

singularity. Let us replace (X, D) by (X̂, D̂).
In summary, we have a morphism f : X → P1 whose general fibers are P1 and X is 

F0, F2, a smooth cubic surface or a cubic surface with an A2 singularity. We may further 
choose a section C of f disjoint from Xsing.

Let F be a fiber of f . Since C ∩Xsing = ∅, C + mF is Cartier for all m ∈ Z. Let us 
consider Γ ∈ |C + mF | for m >> 1.

When C + mF is big and nef, we observe that the map

H0(OX(C + mF )) H0(OD(C + mF )) (3.4)

is a surjection since

h1(−D + C + mF ) = h1(KX + C + mF ) = h1(−C −mF ) = 0 (3.5)

by Kawamata–Viehweg vanishing. Therefore, for m >> 1 and every p ∈ Dsm satisfying 
ap = C + mF in Pic(D), there exists Γ ∈ |C + mF | such that Γ meets D at the unique 
point p. Since Γ does not pass through the node of D if D is nodal and Xsing = Dsing, 
the section Γ does not pass through the singularity of X.
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Since Γ is a member of the linear series |C + mF |, it consists of a section R of 
f : X → P1 and a union of components F1, F2, . . . , Fb contained in the fibers of f with 
certain multiplicities in Γ, i.e.,

Γ = R + m1F1 + m2F2 + · · · + mbFb.

For every Fi, since

2pa(Fi) − 2 = F 2
i − FiD < 0,

Fi has to be a smooth rational curve. Since Γ is away from the singularity of X, R is 
smooth. So Γ is supported on a union of smooth rational curves.

By Lemma 3.3, there exists p satisfying (3.3). So there exists a curve Γm ∈ |C +mF |
such that Γm meets D only at a point p satisfying (3.3). Let Γ′

m be an irreducible 
component of Γ. Then Γ′

m is a smooth rational curve meeting D at the unique point p. 
Note that Γ′

m is Cartier since it is disjoint from Xsing. So

Γ′
mD ≥

√
a

|Gtors|
→ ∞ as m → ∞ (3.6)

by (3.3). Consequently, there are infinitely many A1 curves in X\D. �
We are also ready to prove Theorem 1.5. First, we need to justify the claim that every 

A1 curve in XC\DC is defined over Q for a log K3 surface (X, D) over Q.

Lemma 3.4. Let D be an effective divisor of normal crossings on a smooth projective 
variety X. If KX +D is pseudo-effective, there do not exist a quasi-projective variety B, 
a dominant morphism f : Y = P1 × B → X and a section Γ ⊂ Y of Y/B such that 
f−1(D) ⊂ Γ. In addition, if dimX = 2 and (X, D) is defined over Q, then every ra-
tional curve C ⊂ XC satisfying |ν−1(D)| ≤ 1 is defined over Q with ν : Cν → X the 
normalization of C.

Proof. Suppose that such f exists. We may assume that Y is smooth and f is generically 
finite. Then f∗(ΩX(logD)) ⊂ ΩY (log Γ). It follows that (KY + Γ) − f∗(KX + D) is 
effective and hence KY + Γ is pseudo-effective. But (KY + Γ).Yb < 0 for b ∈ B general. 
Contradiction.

Suppose that dimX = 2, (X, D) is defined over Q and C ⊂ XC is a rational curve 
satisfying |ν−1(D)| ≤ 1 and transcendental over Q. Then C is defined over a field k ⊂ C

which has finite transcendence degree at least one over Q, i.e., C is a rational curve in 
Xk = X ×Q k. We can then find an affine variety B over Q with Q(B) = k such that 
C can be extended to a non-trivial family C ⊂ X ×Q B of rational curves over B whose 
generic point is Cη = C. This construction is usually called taking a spread over Q. 
Clearly, |ν−1

b (D)| ≤ 1 for b ∈ B general, where ν : Ĉ → X ×B is the normalization of C. 
So we have a positive dimensional family of A1 curves in X\D. Contradiction. �
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Proof of Theorem 1.5. In the proof of Theorem 3.1, we have actually found a sequence 
{Γn} of rational curves on X such that each Γn meets D at a unique point pn ∈ Dsm
with the properties

anpn ∈ G = i∗D Pic(X) for some an ∈ Z+

mpn /∈ G for all 0 < m < an

lim
n→∞

an = ∞.

(3.7)

Let M be the subgroup of Pic(D) generated by pn. Then (3.7) implies that M contains 
torsions of arbitrarily high orders.

Suppose that all Γn are defined over a number field k. WLOG, let us assume that D is 
defined over k as well. Then pn are also defined over k. If D is a smooth elliptic curve, by 
the Mordell–Weil Theorem (cf. [14]), M is finitely generated and cannot contain torsions 
of arbitrarily high orders. If D is a nodal rational curve, M ⊂ k∗ again cannot contain 
torsions of arbitrarily high orders in (C∗)tors. Contradiction. �
4. Proof of Theorem 1.4

4.1. A necessary condition for the existence of infinitely many A1 curves

Lemma 4.1. Let X be a smooth projective surface with H1(X) = 0 and D be a nc divisor 
on X. If there is an infinite sequence {Cm ⊂ X} of integral curves of increasing degrees 
satisfying that |ν−1

m (D)| ≤ 1 for the normalization νm : Cν
m → X of Cm and all m, then

for every log isomorphism f : (X,D) ∼ (X̂, D̂) satisfying that

X̂ is smooth, D̂ is of nc and μ(D̂) > 1,

there exist a numerically effective (nef) and big divisor L̂ on X̂

and irreducible components D̂1 �= D̂2 of D̂ such that

D̂1 ∩ D̂2 �= ∅ and L̂(D̂ − D̂1 − D̂2) = 0.

(4.1)

Proof. Let Ĉm be the proper transform of Cm under f . Then Ĉm meets D̂ at no more 
than one point. Since D̂ is a nc divisor, no three components of D̂ meet at one point. 
Therefore, there exist components D̂1 �= D̂2 of D̂ such that D̂1∩D̂2 �= ∅ and Ĉm∩D̂i = ∅
for components D̂i �= D̂1, D̂2 and infinitely many m. Hence

Ĉm(D̂ − D̂1 − D̂2) = 0 (4.2)

for infinitely many m. We may simply assume that (4.2) holds for all m.
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Next, we claim that there exists a nef and big divisor L̂ =
∑

aiĈi for some ai ∈ Z. 
This, combining with (4.2), will imply L̂(D̂ − D̂1 − D̂2) = 0.

Obviously, Ĉ1, Ĉ2, ..., Ĉm are linearly dependent in H2(X, Q) as long as m > h2(X). 
So there exist integers a1, a2, ..., am, not all zero, such that

a1Ĉ1 + a2Ĉ2 + ... + amĈm = 0 (4.3)

in H2(X, Q). We write

A =
∑
ai>0

aiĈi ∼num −
∑
ai<0

aiĈi = B. (4.4)

Since Ĉi are effective, A �= 0 and B �= 0.
Clearly, AC = BC ≥ 0 for all irreducible curves C and thus A and B are nef. If 

A2 > 0, A is big and nef and we are done. Suppose that A2 = 0. If AĈn > 0 for some 
n ∈ Z+, then NA + Ĉn is big and nef for some N >> 1. Suppose that AĈn = 0 for all n.

Since H1(X) = 0, A = B in PicQ(X). WLOG, suppose that A = B in Pic(X). 
Then A and B span a base-point-free pencil in |A| which induces a map f : X → P1. 
Since AĈn = 0, each Ĉn is contained in a fiber of f . So degA ≥ deg Ĉn for all n. But 
deg Ĉn → ∞ as n → ∞. Contradiction. Therefore, we must have A2 > 0. Hence A is big 
and nef and

A(D̂ − D̂1 − D̂2) = 0 (4.5)

by (4.2). �
Now we can prove the “only if” part of Theorem 1.4. That is, if there are infinitely 

many A1 curves in X\D, (X, D) cannot be of type C4.

Proof of “only if” part of Theorem 1.4. If (X, D) is C4, then D = D1 + D2 with D2
i =

λi > 0. Let f : X̂ → X be the blowup of X at the two intersections D1 ∩ D2; then 
D̂ = f−1(D) has four components, each having self-intersection ≥ −1 (see Fig. 2). 
We claim that (X̂, D̂) violates (4.1). Let D̂1 �= D̂2 be two components of D̂ satisfying 
D̂1 ∩ D̂2 �= ∅. Then

D̂ − D̂1 − D̂2 = D̂3 + D̂4 (4.6)

for two components D̂3 �= D̂4 satisfying D̂3 ∩ D̂4 �= ∅ (see Fig. 2). Since D̂2
3 ≥ −1, 

D̂2
4 ≥ −1 and D̂3D̂4 ≥ 1, D̂3 + D̂4 is nef.
Suppose that (4.1) holds. Then L(D̂3 + D̂4) = 0 for a big and nef divisor L. By 

the Hodge index theorem [12, Lem. 1.10.2], we have (D̂3 + D̂4)2 = 0 and D̂3 + D̂4 is 
numerically trivial. And since X is rational, D̂3 + D̂4 is rationally trivial on X. Contra-
diction. �
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Fig. 2. D = D1 + D2, D2
1 = λ1 > 0 and D2

2 = λ2 > 0.

4.2. Infinitely many A1 curves on (X, D) of type C3

It remains to prove the “if” part of Theorem 1.4. That is, there are infinitely many 
A1 curves on (X, D) of type C0–C3. We have proved the existence for C0 and C1 in 
Theorem 3.1. Type C3 is more or less trivial by the following lemma.

Lemma 4.2. Let (X, D) be a genuine log K3 surface with circular boundary D = D1 +D2
satisfying that D2

2 = 0. Then there are infinitely many A1 curves in X\D.

Proof. Let π : X → P1 be the fiberation given by |D2|. By contracting (−1)-curves 
contained in the fibers of π, we see that π factors through a rational ruled surface X via 
f : X → X. And since

−KX = f∗D = D = D1 + D2 = f∗D1 + f∗D2 (4.7)

is effective with D
2
2 = 0, we see that X is either F0 or F1 by [8, Lem. 7]. Let us replace 

(X, D) by (X, D).
So X ∼= Fβ , D1 ∈ |2C + (β + 1)F | and D2 ∈ |F |, where β = 0 or 1, F is a fiber of π

and C is a section of π with C2 = −β. Suppose that D1 and D2 meets at two points p
and p′. For each m ∈ N, we have a smooth curve Cm ∈ |C + (m + β)F | meeting D1 at p
with multiplicity 2m + β + 1. Clearly, Cm\{p} is an A1 curve in X\D. �
4.3. Infinitely many A1 curves on (X, D) of type C2

As a technical issue, we need D2
1 > 0 later on. We can assume that by the following 

lemma.

Lemma 4.3. Let (X, D) be a genuine log K3 surface with circular boundary D = D1 +
D2+ ... +Dn satisfying D2

1 �= 0, −1 and D2
i ≤ −2 for i �= 1. Then there exists a birational 

morphism f : X → X with D = f∗D such that (X, D) is a genuine log K3 surface of 
either type C1 or type C2 with D

2
1 > 0 and D

2
i ≤ −2 for i �= 1.

Proof. There is nothing to do if D2
1 > 0. Let us assume that D2

i ≤ −2 for all i. We prove 
by induction on rankZ Pic(X).
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Clearly, X is not minimal. Let f : X → X be the contraction of a (−1)-curve followed 
by a sequence of canonical blowdowns such that D has no component with self intersec-
tion −1. Clearly, all but one component of D satisfy D

2
i ≤ −2. WLOG, suppose that 

D
2
i ≤ −2 for i �= 1. If μ(D) = 1 or D2

i > 0, we are done. If D2
1 ≤ −2, it follows from 

induction hypothesis since f has reduced rankZ Pic(X) by 1.
Suppose that D2

1 = 0. If μ(D) ≥ 3, assuming D of type (0, λ2, ..., λm), then a sequence 
of pivot operations at D1

(0, λ2, ..., λm) → (0, λ2 − 1, ..., λm + 1) → ... → (0,−1, ..., λm + λ2 + 1) (4.8)

followed by a sequence of canonical blowdowns will give us what we want.
Suppose that D2

1 = 0 and μ(D) = 2. If D1E = 1 for some (−1)-curve E, then blow 
down E and we are done. Otherwise, D1E = 0 for all (−1)-curves E on X. Then there 
exists a birational morphism g : X → X̂ with D̂i = g∗Di such that D̂2

2 = −1. Blowing 
down D̂2, we obtain a genuine log K3 of type C1. �

It remains to prove the following:

Proposition 4.4. Let (X, D) be a genuine log K3 surface with circular boundary D =
D1 + D2 + ... + Dn of type (λ1, λ2, ..., λn). If λ1 > 0 and λi ≤ −2 for i �= 1, then there 
are infinitely many A1 curves in X\D.

We follow a similar line argument as Xu’s proof of Theorem 3.2. To start with, we 
need “many” rational curves in X disjoint from D2 + D3 + ... + Dn, or equivalently, 
many rational curves in the smooth locus Xsm of X, where X → X is the contraction 
of D2 + D3 + ... + Dn. This is where the theorem of Keel and McKernan comes in: the 
smooth locus of a log del Pezzo surface is rationally connected [9, Corollary 1.6]. We put 
their theorem in the following form:

Theorem 4.5 (Keel–McKernan). Let X be a log del Pezzo surface. Then there exists an 
ample Cartier divisor A on X such that

• VA,0 is nonempty of expected dimension −KXA − 1 ≥ 2,
• a general member C ∈ VA,0 lies inside Xsm,
• the normalization ν : Cν → X of C is an immersion,
• ν∗TX is ample,
• and C meets a fixed reduced curve D transversely.

Furthermore, the same holds for VmA,0 and all m ∈ Z+ and a general member of VmA,0
is nodal if −mKXA − 1 ≥ 4.

Remark 4.6. The key observation here is that once we can deform a rational curve away 
from Xsing, the standard deformation theory of curves on smooth surfaces will take over. 
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As long as C ∩Xsing = ∅ for a general member C ∈ VA,0, we can prove that VA,0 has the 
expected dimension. In addition, as long as dimVA,0 ≥ 2, a general member C ∈ VA,0

behaves as expected (cf. [7, Chapter 3, Section B]), i.e., ν : Cν → X is an immersion, 
ν∗TX is ample and C is nodal if dimVA,0 ≥ 4. In our case, to deform a rational curve away 
from the only singularity of X ′ or X, we actually only need a lemma in Keel–McKernan’s 
paper [9, Lemma 6.4]. Moreover, once we have dimVA,0 = −KXA − 1, we can produce 
more rational curves by taking two general members C1, C2 ∈ VA,0 and deforming the 
union C1∪C2 to a rational curve in V2A,0. More generally, if dimVA1,0 = −KXA1−1 ≥ 0, 
dimVA2,0 = −KXA2 − 1 ≥ 0 and two general members C1 ∈ VA1,0 and C2 ∈ VA2,0 meet 
transversely, then C1 ∪ C2 can be deformed to a rational curve in VA1+A2,0. So we can 
prove in this way that the theorem holds for all VmA,0.

Basically, we want to impose tangency conditions on C ∈ VA,0. Let us first define the 
subvarieties of Severi varieties of curves on X tangent to a fixed curve D as follows.

Definition 4.7. For a curve D on a projective surface X and a zero cycle α = m1p1 +
m2p2 + ... + mkpk ∈ Z0(D), we use the notation VA,g,D,α to denote the subvariety of 
VA,g consisting of integral curves C ∈ |A| of genus g satisfying that

• C meets D properly and
• there exists qi ∈ ν−1(pi) and ni ≥ mi such that q1, q2, ..., qk are distinct and ν∗D =

niqi when ν is restricted to the open neighborhoods of pi and qi for i = 1, 2, ..., k,

where ν : Ĉ → X is the normalization of C, m1, m2, ..., mk ∈ Q+ and p1, p2, ..., pk are 
points on D such that D is locally Q-Cartier at each pi.

We are going to prove Proposition 4.4 by showing that there are infinitely many 
rational curves C ⊂ X meeting D only at p ∈ D1 ∩D2; more precisely, we are going to 
show

VAm,0,D,amp �= ∅ (4.9)

for a sequence of divisors Am satisfying am = AmD → ∞ as m → ∞. For starters, we 
prove the following:

Proposition 4.8. Let (X, D) be a genuine log K3 surface with circular boundary D =
D1 +D2 + ... +Dn of type (λ1, λ2, ..., λn). If λ1 > 0 and λi ≤ −2 for i �= 1, then (X, D)
can be replaced by a log isomorphic model such that D2

1 > 0, the intersection matrix of 
D −D1 is negative definite and there exists a sequence of divisors Am on X satisfying 
that
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Am(D −D1) = AmD2 = 1,

lim
m→∞

AmD = ∞,

dimVAm,0,D,2p = AmD − 2 for p ∈ D1 ∩D2, (4.10)

and a general member Cm ∈ VAm,0,D,2p meets D

transversely at AmD − 2 points outside of p.

Proof. Let us first prove that (X, D) can be replaced by a log isomorphic model such 
that D2

1 > 0, the intersection matrix of D − D1 is negative definite and there is an 
effective divisor F on X such that F 2 = 0 and FD1 = FD2 = 1.

By (2.1), we have that rankZ Pic(X) ≥ n for the log K3 pair (X, D). If n = 2, then 
there exists a fiberation π : X → P1 whose general fibers are P1 and a fiber F of π has the 
required property. Suppose that n ≥ 3. Then X is a rational surface of rankZ Pic(X) ≥ 3. 
In particular, X contains a (−1)-curve E. Since DE = −KXE = 1, DkE = 1 for some 
k �= 1. We prove that there exists a log isomorphism f : (X, D) ��� (X̂, D̂) such that 
the proper transform of E is the divisor F we want. This f is given by a sequence of 
canonical blowups and blowdowns and pivot operations. First, we can replace D1 by 
a chain of curves of self intersections (−2, −2, ..., −2, −1, 0) by a sequence of canonical 
blowups over D1 ∩Dn:

(λ1, λ2, ..., λn)

→ (λ1 − 1, λ2, ..., λn − 1,−1)

→ (λ1 − 2, λ2, ..., λn − 1,−2,−1) → ...

→ (0, λ2, λ3, ..., λn − 1,−2,−2, ...,−2,−1).

(4.11)

Then a sequence of pivots at D1 render D2
2 = −1, D2 can then be contracted and D2

1 is 
restored to 0 by a canonical blowup:

→ (0,−1, λ3, ..., λn − 1,−2,−2, ...,−2, λ2)

→ (1, λ3 + 1, λ4, ..., λn − 1,−2,−2, ...,−2, λ2)

→ (0, λ3 + 1, λ4, ..., λn − 1,−2,−2, ...,−2, λ2 − 1,−1).

(4.12)

We continue this process until Dk is contracted:

→ (0,−1, λ4, ..., λn − 1,−2,−2, ...,−2, λ2 − 1, λ3 + 1)

→ (1, λ4 + 1, ..., λn − 1,−2,−2, ...,−2, λ2 − 1, λ3 + 1)

→ (0, λ4 + 1, ..., λn − 1,−2,−2, ...,−2, λ2 − 1, λ3,−1)

→ (0,−1, λ5, ..., λn − 1,−2, ...,−2, λ2 − 1, λ3, λ4 + 1)

→ (1, λ5 + 1, ..., λn − 1,−2, ...,−2, λ2 − 1, λ3, λ4 + 1) → ...



X. Chen, Y. Zhu / Advances in Mathematics 313 (2017) 718–745 733
→ (1, λk + 1, ..., λn − 1,−2, ...,−2, λ2 − 1, λ3, ..., λk−2, λk−1 + 1) (4.13)

→ (0, λk + 1, ..., λn − 1,−2, ...,−2, λ2 − 1, λ3, ..., λk−2, λk−1,−1)

→ (0,−1, λk+1, ..., λn − 1,−2, ...,−2, λ2 − 1, λ3, ..., λk−1, λk + 1)

→ (1, λk+1 + 1, ..., λn − 1,−2, ...,−2, λ2 − 1, λ3, ..., λk−1, λk + 1)

where (4.11)–(4.13) illustrate how the type of circular boundary D changes in the process. 
At the last step, when we contract the proper transform D̂k of Dk, the self-intersection 
E2 of E increases by 1 and its proper transform F is what we are after.

Applying Theorem 4.5 to the log del Pezzo surfaces X obtained from X by contracting 
D −D1, we obtain base-point-free (bpf) and big divisors A on X such that

A(D −D1) = 0,

dimVA,0 = AD − 1 ≥ 2.
(4.14)

Let Am = mA + F . Clearly, AmD2 = 1, AmDi = 0 for i �= 1, 2 and AmD → ∞ as 
m → ∞.

Let Fp be the member of the pencil |F | passing through p. Then the union Γ1∪Γ2∪... ∪
Γm ∪ Fp can be deformed to a curve Cm ∈ VAm,0,D,2p for m general members Γi ∈ VA,0. 
Here we only need to apply the standard deformation theory (cf. [7]) to curves in |Am|
passing through p (also see Remark 4.6). So

dimVAm,0,D,2p = AmD − 2. (4.15)

Using the standard deformation theory and the rigidity Lemma 3.4, it is easy to see that 
a general member Cm ∈ VAm,0,D,2p meets D transversely at AmD − 2 points outside 
of p. �

Starting with (4.15), naturally, we try to prove (4.9) by imposing more tangency 
conditions on Cm ∈ VAm,0,D,2p at p. We are going to do this inductively by increasing 
the multiplicity at p one at a time. That is, we will roughly show that

dimVAm,0,D,kp = AmD − k (4.16)

for all k. When we deform/degenerate a family of rational curves on X for this purpose, 
one difficulty arises: its flat limit might contain some components of D. To deal with this 
situation, we need the following key lemma.

Lemma 4.9. Let X be a smooth projective surface, D = D1 +D2 + ... +Dn be a circular 
boundary on X and f : Y/Δ → X be a family of stable rational maps over the unit disk 
Δ = {|t| < 1} satisfying that Yt

∼= P1 and f(Yt) meets D properly for t �= 0. Suppose 
that
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Fig. 3. A configuration of G◦ for f : G◦ → D = D1 + D2.

dim(D ∩ f(Y0)) > 0,

f∗D =
c∑

i=1
miΓi + V and

Dsing ∩ f(Γi) = ∅ for i �= 1, 2,

(4.17)

where V ⊂ Y0 and Γi are distinct sections of Y/Δ of multiplicities mi > 0 in f∗D.
Let G = Γ1∪Γ2∪supp(V ) ⊂ Y and let G◦ be the curve obtained from G by contracting 

all contractible components under the map f : G → D. That is, G → G◦ → D is the 
Stein factorization of f : G → D. Then G◦ is a chain of curves given by (see Fig. 3 for 
a configuration of G◦ when n = 2)

G◦ = Γ1 ∪ C1 ∪ C2 ∪ . . . ∪ Ca ∪ Γ2 (4.18)

where Γ1 ∩ C1 = q0, Ci ∩ Ci+1 = qi, Ca ∩ Γ2 = qa,

• f(qi) ∈ Dsing for i = 0, 1, ..., a,
• f sends each Ci onto one of Dj with a map totally ramified over the two intersections 

Dj ∩ (D −Dj) for i = 1, 2, ..., a,
• f maps G◦ locally at qi surjectively onto D at f(qi) for 0 < i < a,
• f maps G◦ locally at q0 surjectively onto D at f(q0) if f∗Γ1 �= 0,
• and f maps G◦ locally at qa surjectively onto D at f(qa) if f∗Γ2 �= 0.

In particular, if f∗Γ1 �= 0 and f(Γ1) ⊂ D1, Γ1 lies on the connected component M of 
f−1(D1) such that Γi �⊂ M for all i �= 1 and f∗E = 0 for all irreducible components 
E �= Γ1 ⊂ M .
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Remark 4.10. Here is some clarification of the terms in the lemma:

• We call a curve F = F1 ∪ F2 ∪ ... ∪ Fn a chain of curves if the dual graph of F is a 
chain, i.e., a tree with at most two vertices of degree ≤ 1.

• The curve G◦ has a node at each qi and f maps each qi to a node of D. By “f maps 
G◦ locally at qi surjectively onto D at f(qi)”, we mean f maps the two branches 
of G◦ at qi to the two branches of D at f(qi). More explicitly, f is locally given 
by f(x, y) = (xm, yn) from SpecC[[x, y]]/(xy) to SpecC[[s, t]]/(st) for some positive 
integers m and n.

Proof of Lemma 4.9. We first prove the following statement:

Claim 4.11. For every component C ⊂ Y0 and a point q ∈ C satisfying that f∗C �= 0, 
f(C) ⊂ D and f(q) ∈ Dsing, there exists either a chain C ∪ E1 ∪ E2 ∪ ... ∪ Ea ∪ Γi of 
curves satisfying

C ∩ E1 = q, Ek ∩Ek+1 �= ∅, f∗Ek = 0, Ea ∩ Γi = q′ for some Γi

and f maps C and Γi locally at q and q′

to the two branches of D at f(q), respectively, if f∗Γi �= 0

(4.19)

or a chain C ∪ E1 ∪ E2 ∪ ... ∪ Ea ∪ C ′ of curves satisfying

C ∩ E1 = q, Ek ∩ Ek+1 �= ∅, f∗Ek = 0, Ea ∩ C ′ = q′

for some component C ′ ⊂ Y0 with f∗(C ′) �= 0 and f(C ′) ⊂ D

and f maps C and C ′ locally at q and q′

to the two branches of D at f(q), respectively.

(4.20)

WLOG, we assume that f(C) = D1 and f(q) = p = D1 ∩ D2. The statement is 
local. So we choose an analytic open neighborhood U of p ∈ X and let M be the 
connected component of f−1(U) that contains q. Since q ∈ f−1(D2), we have either 
Γi ∩ M �= ∅ for some Γi with f(Γi ∩ M) ⊂ D2 or C ′ ∩ M �= ∅ for some component 
C ′ ⊂ Y0 with f(C ′ ∩ M) = D2 ∩ U such that Γi or C ′ is joined to C by a chain of 
contractible components. In addition, if it is the former and f∗Γi �= 0, we necessarily 
have f(Γi ∩M) = D2 ∩ U . This proves Claim 4.11.

We let Σ be the subgraph of the dual graph of Y0 that contains all components C ⊂ Y0
satisfying f∗C �= 0 and f(C) ⊂ D and all chains C ∪ E1 ∪ E2 ∪ ... ∪ Ea ∪ C ′ with the 
property (4.20). Note that every contractible component in Σ has degree ≥ 2.

If Dsing ∩ f(Γi) = ∅ for all but one Γi, then by Claim 4.11, all but one vertices in Σ
have degree ≥ 2 with the remaining vertex of degree ≥ 1, which contradicts the fact that 
Σ is a disjoint union of trees.
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Therefore, Dsing ∩ f(Γi) �= ∅ for i = 1, 2 and all but two vertices in Σ have degree ≥ 2
and the remaining two vertices have total degree ≥ 2. So Σ has to be a chain. Then it is 
easy to see that G◦ is a chain of curves with the properties described by the lemma. �

To finish the proof of Proposition 4.4 and thus settle the last case of Theorem 1.4, it 
remains to prove the following:

Proposition 4.12. Let X be a smooth projective surface, D =
∑n

i=1 Di be a circular 
boundary on X, p ∈ D1 ∩ D2 and A be a divisor on X satisfying that a = AD =
A(D1 + D2) > AD2 = 1. If KX + D is pseudo-effective, D2

1 > 0, dimVA,0,D,2p = a − 2
and a general member of VA,0,D,2p meets D transversely at a −2 points outside of p, then 
for each 0 ≤ l ≤ a − 2, there exist m0, m1, ..., ma−l−2 ∈ Z+ and Al ≤ A such that

a = AlD = 1 +
a−l−2∑
i=0

mi and

VAl,0,D,α �= ∅ for α = (m0 + 1)p +
a−l−2∑
i=1

mipi

(4.21)

where p1, p2, ..., pa−l−2 are a − l − 2 general points on D1 and we write A ≥ B for two 
divisors A and B if A −B is effective.

Proof. Since a general member of VA,0,D,2p meets D transversely at a − 2 points outside 
of p, we have

VA,0,D,α �= ∅ for α = 2p + p1 + p2 + ... + pa−2 (4.22)

where p1, p2, ..., pa−2 are a − 2 general points on D1. So the proposition holds for l = 0. 
We argue by induction on l.

Suppose that there exist m0, m1, ..., ma−l−2 ∈ Z+ such that

dimVA,0,D,α = 0 for α = (m0 + 1)p +
a−l−2∑
i=1

mipi. (4.23)

Among pi, we fix a − l − 3 general points p2, p3, ..., pa−l−2 on D1, let

λ =
a−l−2∑
i=2

mipi (4.24)

and let q = p1 vary. More precisely, we consider the closure W of

W ◦ = {(C, q) : C ∈ VA,0,D,(m0+1)p+m1q+λ and q ∈ D1 general}

⊂ |A| ×D1.
(4.25)

By induction hypothesis (4.23), W is finite over D1.
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Let U = {(C, q, s) : s ∈ C, (C, q) ∈ W} ⊂ W × X be the universal family over W . 
Applying stable reduction to U/D1, we obtain a finite morphism φ : B → W → D1 and 
a family f : Y/B → X of stable rational maps satisfying that f∗Yb ⊂ Uφ(b) for all b ∈ B.

Obviously,

f∗D1 = m0P + m1Q +
a−l−2∑
i=2

miPi + V = m0P + m1Q + Λ + V (4.26)

where π∗V = 0 for π : Y → B and P, Pi and Q are the sections of Y/B satisfying that 
f(P ) = p, f(Pi) = pi and f(Q ∩ Yb) = φ(b) for all b ∈ B.

In other words, Q is the moving intersections between f∗Yb and D1, while P and Pi

are the fixed intersections. We want to show that Q “collides” with one of P and Pi, 
which will reduce the number of points in {p1, p2, ..., pa−l−2} and thus increase l by one.

One of the key hypotheses is D2
1 > 0. So D1 is nef and big. Consequently, f−1(D1) is 

connected. So Q and one of P and Pi are joined by a chain of curves in V . More precisely, 
either P +V0 +Q or Pi +V0 +Q is connected for some i and a connected component V0

of V contained in a fiber Yb. We will be almost done if f(Yb) meets D properly, i.e.,

dim(f(Yb) ∩D) = 0, (4.27)

which implies that f∗V0 = 0. This is guaranteed by our key lemma. Suppose that f(Yb)
fails to meet D properly. Here we only consider Y/B in an analytic open neighborhood of 
Yb. Suppose that Q lies on a connected component M of f−1(D1). Applying Lemma 4.9
to Y/B with Γ1 = Q and Γ2 = P , we conclude that M does not contain any sections 
Γ �= Q of Y/B with f(Γ) ⊂ D1. That is, P, Pi �⊂ M for all i. But M must contain one 
of P + V0 + Q and Pi + V0 + Q since one of P + V0 + Q and Pi + V0 + Q is connected. 
Contradiction. So we necessarily have (4.27).

Therefore, C = f∗Yb meets D properly and f∗V0 = 0. Hence

C.D = (m0 + m1 + 1)p +
a−l−2∑
j=2

mjpj (4.28)

if P + V0 + Q is connected and

C.D = (m0 + 1)p + (m1 + mi)pi +
∑

2≤j≤a−l−2
j 	=i

mjpj (4.29)

if Pi + V0 + Q is connected for some 2 ≤ i ≤ a − l − 2.
We claim that we cannot write C = C1 + C2 with Ck ≥ 0 and CkD > 0. Otherwise, 

since CD2 = 1, one of C1 and C2 does not pass through p. Thus,
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C1.D = a11p +
a−l−2∑
j=2

a1jpj

C2.D =
a−l−2∑
j=2

a2jpj

(4.30)

for some a1j , a2j ∈ N. So C2 meets D at the smooth points on D1 and hence

a−l−2∑
j=2

a2jpj = i∗DC2 ∈ i∗D Pic(X) (4.31)

in Pic(D). Note that i∗D Pic(X) is a finitely generated subgroup of Pic(D). On the other 
hand, p2, p3, ..., pa−l−2 are general points on D1. So (4.31) cannot hold.

This implies that C has only one irreducible component Γ that meets D and the 
union of the rest of the components of C, called E, are disjoint from D. So we have the 
decomposition

C = Γ + E (4.32)

where ΓD = AD = a, which is equivalent to saying that ED = 0. Now we have that 
Γ ∈ VAl+1,0,D,α for Al+1 = Γ and

α = (m0 + m1 + 1)p +
a−l−2∑
j=2

mjpj or

α = (m0 + 1)p + (m1 + mi)pi +
∑

2≤j≤a−l−2
j 	=i

mjpj

(4.33)

for some 2 ≤ i ≤ a − l − 2. �
5. Iitaka models

5.1. Iitaka models

Iitaka had a complete classification of log K3’s. More generally, Iitaka and Zhang 
also classified Iitaka surfaces, which are log K3’s with the condition h0(ΩX(logD)) = 0
removed. For our purpose, we just need the following [8, Theorem 3 & Theorem IIa & 
Table IIa & Proposition 16 & Table IIb]

Theorem 5.1 (Iitaka’s Classifications of Type II log K3). For every Type II log K3 (X, D), 
there exists a birational morphism f : X → X, where X is a minimal rational surface, 
D = f∗D is a nc divisor and (X, D) is one of the following:
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(a-i) (P2, E) where E is a smooth elliptic curve;
(a-ii) (F0, E) where E is a smooth elliptic curve;
(a-iii) (F2, E) or (F2, E + Δ∞), where E is a smooth elliptic curve and Δ∞ is the 

section of F2/P
1 with Δ2

∞ = −2;
(b-i) (P2, H1 + H2 + H3) where each Hi is a line on P2;
(b-ii) (F0, H1 + H2 + G1 + G2) where each Hi has type (1, 0) and each Gj has type 

(0, 1);
(b-iii) (Fβ , Δλ+Δ∞ +F1 +F2) where Δλ and Δ∞ are two sections of Fβ/P

1 satisfying 
Δ2

λ = −Δ2
∞ = β ≥ 2 and each Fi is a fiber;

(b-iv) (P2, H + C) where H is a line and C is a conic;
(b-v) (F0, C1 + C2) where each Ci has type (1, 1);
(b-vi) (F2, Δ0 + Δλ) or (F2, Δ0 + Δλ + Δ∞) where Δ0, Δλ and Δ∞ are sections of 

F2/P1 satisfying Δ2
0 = Δ2

λ = −Δ2
∞ = 2;

(b-vii) (Fβ , F +Δ∞ +C3) where F is a fiber and Δ∞ and C3 are two sections of Fβ/P
1

satisfying −Δ2
∞ = C2

3 − 2 = β ≥ 2;
(b-viii) (F0, H+G +C) where H, G and C has types (1, 0), (0, 1) and (1, 1), respectively;
(b-ix) (P2, E) where E is a nodal rational curve with one node;
(b-x) (F0, E) where E is a nodal rational curve with one node;
(b-xi) (F2, E) or (F2, E + Δ∞), where E is a nodal rational curve with one node and 

Δ∞ is the section of F2/P
1 with Δ2

∞ = −2;
(b-xii) (F0, C1 + C2) where C1 has type (1, 2) and C2 has type (1, 0);
(b-xiii) (Fβ , C + Δ∞) where C and Δ∞ are two sections of Fβ/P

1 satisfying −Δ2
∞ =

C2 − 4 = β ≥ 2.

We use the notations IIa-• and IIb-• to refer such (X, D). For the last type IIb-xiii, we 
may contract Δ∞ to obtain a log del Pezzo surface. Thus, we replace/expand this type 
by/to the following:

(b-xiii) X is a log del Pezzo surface of Picard rank 1, i.e., X is a projective surface with 
log terminal singularities, ample anti-canonical divisor −KX and rankZ Pic(X) =
1, D ∼ −KX is a rational curve with one node p and X is singular at p and 
smooth outside of p.

Log del Pezzo surfaces of Picard rank 1 have been extensively studied (cf. [9]). In our 
case, log del Pezzo surfaces of Picard rank 1 with a unique singularity were classified by 
H. Kojima [10]. Although we do not need it here, one can use Kojima’s classification to 
further divide IIb-xiii into subclasses.

We call (X, D) an Iitaka model of (X, D). Note that Iitaka model for a log K3 is not 
unique. For example, let X be the blowup of P2 at two distinct points and let D = C1+C2, 
where C1 ∼ 2H and C2 ∼ H−E1−E2 with H the pullback of the hyperplane divisor and 
Ei the exceptional divisors of X → P2. We may let f : X → X ∼= P2 be the blowdown of 
E1 and E2, which results in Iitaka model IIb-iv. Or we may let f : X → X ∼= F0 be the 
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blowdown of C2, which results in Iitaka model IIb-x. Indeed, although we do not need 
this fact, it is easy to show that there exists a genuine log K3 whose Iitaka model can 
be any type in IIb.

Also note that although we have KX +D = f∗(KX +D), (X, D) is not necessarily a 
log K3. That is, (X, D) might be irregular:

h0(ΩX(logD)) = dimQ ker(⊕QDi → H2(X,Q)) > 0 (5.1)

for Iitaka types IIb-i–IIb-viii, where Di are the irreducible components of D.
We can reformulate our theorems using the language of Iitaka model: there are in-

finitely many A1 curves in X\D if and only if (X, D) has a log K3 Iitaka model, i.e., 
IIb-ix–IIb-xiii.

Theorem 5.2. For every genuine log K3 surface (X, D) of type II, there exists a log 

isomorphism (X,D) ∼ (X̂, D̂) followed by a birational morphism f : X̂ → X with 

D = f∗D̂ such that (X̂, D̂) is one of C0–C4 in Theorem 1.3 and

• if (X̂, D̂) is C0, (X, D) is one of IIa-•;
• if (X̂, D̂) is C1, (X, D) is one of IIb-ix–IIb-xi;
• if (X̂, D̂) is C2, (X, D) is one of IIb-ix–IIb-xiii;
• if (X̂, D̂) is C3, (X, D) is IIb-xii;
• if (X̂, D̂) is C4, (X, D) is IIb-iv–IIb-vi.

On the other hand, we can prove

Theorem 5.3. For each (X, D) among IIb-i–IIb-viii, there exists a genuine log K3 surface 
(X, D) and a birational morphism g : X → X with D = g∗D such that there are at most 
finitely many A1 curves in X\D.

The proof of Theorem 5.3 gives many examples of genuine log K3 surfaces without 
infinitely many A1 curves.

5.2. Proof of Theorem 5.2

If (X̂, D̂) is of type C0, C1 or C4, we simply let f be the blowdown of X to a minimal 
rational surface X.

Suppose that (X̂, D̂) is of type C3. Let π : X̂ → P1 be the fiberation given by |D̂2|. 
There exists a sequence of blowdowns of (−1)-curves contained in the fibers of π:

X̂ = X̂n
fn−−→ X̂n−1

fn−1−−−→ ...
f2−−→ X̂1

f1−−→ X̂0 = X (5.2)
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such that π factors through f = f1 ◦ f2 ◦ ... ◦ fn and X is a rational ruled surface with 
π = π ◦ f−1 : X → P1. Since D = D1 + D2 with D

2
2 = 0, we see that X must be either 

F0 = P1 × P1 or F1. If it is the former, we are done.
Suppose that X ∼= F1. If X̂ � F1, then n ≥ 1 in (5.2) and let E1 be the exceptional 

curve of f1; clearly, there exists another (−1)-curve E2 such that E1 + E2 is a fiber of 
π ◦ f1 : X̂1 → P1 and the blowdown f ′

1 : X̂1 → X
′ of E2 results in X

′ ∼= F0. Replacing 
(X, D) by (X ′

, D
′), we are done. If X̂ ∼= F1, then a pivot operation at D̂2 gives a log 

isomorphism g : (X̂, D̂) ��� (X̂ ′, D̂′) with X̂ ′ ∼= F0. Replacing (X̂, D̂) by (X̂ ′, D̂′), we 
are done.

It remains to treat (X̂, D̂) of type C2. To simplify our notations, we let (X, D) =
(X̂, D̂). We need two lemmas.

Lemma 5.4. Let (X, D) be a log surface with X a smooth projective rational surface, 
D = D1 + D2 + ... + Dn a circular boundary and KX + D = 0. If there are n − 1
components D2, D3, ..., Dn of D such that the intersection matrix of {D2, D3, ..., Dn} is 
negative definite, then (X, D) is a genuine log K3 surface.

Proof. If (X, D) is not a genuine log K3 surface, we have q(X, D) �= 0. By (2.1), 
D1, D2, ..., Dn are linearly dependent in H2(X, Q). Since D2, D3, ..., Dn has negative 
definite intersection matrix, they are linearly independent in H2(X, Q). Therefore, 
D1 = a2D2 + a3D3 + ... + anDn for some ai ∈ Q. At least one of ai’s is positive since 
D1, D2, ..., Dn are effective. It follows that

0 >

(∑
ai>0

aiDi

)2

+
(∑

ai>0
aiDi

)⎛⎝∑
aj<0

ajDj

⎞⎠
= D1

(∑
ai>0

aiDi

)
≥ 0

(5.3)

since the intersection matrix of {D2, D3, ..., Dn} is negative definite. Contradiction. 
Therefore, (X, D) is a genuine log K3 surface. �
Lemma 5.5. Let (X, D) be a genuine log K3 surface with circular boundary D = D1 +
D2 + ... + Dn satisfying that D2

1 > 0 and D2
i ≤ −2 for i �= 1. If rankZ Pic(X) > n, then 

there exists a nontrivial birational morphism f : X → X with D = f∗D such that (X, D)
is a genuine log K3 surface of type C1, C3 or with the property that

there exists an irreducible component Di ⊂ D

such that D −Di has negative definite intersection matrix.
(5.4)

Proof. Note that the number rankZ Pic(X) − μ(D) remains the same after a canonical 
blowdown and decrease by one after a contraction of a (−1)-curve not contained in D. 
Suppose that Di’s satisfy (1.1).
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If there is a (−1)-curve E meets D1, we may simply blow down E and the resulting 
(X, D) obviously satisfies (5.4). Let us assume that

D1E = 0 for all (−1)-curves E. (5.5)

Clearly, X � P2. So there exists a fiberation g : X → P1 whose general fibers are P1. 
Since D2

1 > 0, π∗D1 �= 0. If g has a reducible fiber Fr meeting D properly, then Fr has a 
component E such that D1E > 0; since E2 < 0 and KE < 0, E must be a (−1)-curve. 
This is impossible by (5.5). So

Fr
∼= P1 for all fibers Fr of g satisfying dim(Fr ∩D) = 0. (5.6)

Obviously, D1 is either a section or a multi-section of degree 2 of g. If it is the latter, 
then D2 + D3 + ... + Dn is contained in a fiber of g. Suppose that g factors through a 
ruled surface X. Then g∗D = D is either a nodal rational curve or has two components 
D = D1 +D2 with D

2
2 = 0. Namely, (X, D) is a genuine log K3 surface of type C1 or C3.

Let us assume that D1 is a section of g. Then there is another component Di that is 
a section of g and the rest D −D1 −Di are contained in the two fibers Fp and Fq of g
over p �= q ∈ P1. By (5.6), Fr

∼= P1 for all Fr �= Fp, Fq. Therefore, we have

rankZ Pic(X) − μ(D) = μ(Fp) + μ(Fq) − μ(D)

= (μ(Fp) − μ(Fp ∩D) − 1) + (μ(Fq) − μ(Fq ∩D) − 1) > 0.
(5.7)

Consequently, either μ(Fp) ≥ μ(Fp ∩D) + 2 or μ(Fq) ≥ μ(Fq ∩D) + 2. WLOG, suppose 
that

μ(Fp) ≥ μ(Fp ∩D) + 2. (5.8)

It follows that Fp contains

• either one (−1)-curve E1 and one (−2)-curve E2 with the properties E2∩D = ∅ and 
E1E2 = 1

• or two disjoint (−1)-curves E1 and E2.

Let φ : X → X be the contraction of E1 followed by a sequence of blowdowns of 
(−1)-curves contained in Fp ∩D such that F p ∩D does not contain any (−1)-curves for 
D = φ∗D and F p = φ∗Fp. That is, φ is a birational morphism with the commutative 
diagram

X
φ

g

X

P1

(5.9)
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such that X smooth, F p∩D does not contain any (−1)-curves and the exceptional locus 
Eφ of φ satisfies E1 ⊂ Eφ ⊂ E1 ∪D.

Suppose that E2
2 = −2. WLOG, suppose that E1Dj = 1 for some j > i. Since 

(φ∗E2)2 ≤ 0, Eφ consists of at most two components. If Eφ = E1, then all components 
of D other than D1 = φ∗D1 still have self-intersections ≤ −2 and hence (X, D) satis-
fies (5.4). If Eφ = E1 + Dj has two components, then (φ∗E2)2 = 0 and we must have 
φ(E2) = F p. That is, φ contracts all components Fp ∩ D. So D1 ∩ Di ∩ F p �= ∅ for 
Di = φ∗Di. And since Eφ ∩ D has one component, D2

i = D2
i + 1 ≤ −1. On the other 

hand, all components of D other than D1 and Di still have self-intersections ≤ −2. That 
is, Di is a circular boundary of type (λ1, λ2, ..., λi−1, λi) with λk = D

2
k = D2

k ≤ −2 for 
2 ≤ k < i and λi = D

2
i ≤ −1. Therefore, the components of D −D1 still have negative 

definite intersection matrix. So (X, D) satisfies (5.4) again.
Suppose that E2

2 = −1. WLOG, suppose that E1Dj1 = 1 and E2Dj2 = 1 for some 

j1 ≥ j2 > i. If Eφ ∩ E2 = ∅, then D
2
i = D2

i ≤ −2 and all components of D other than 
D1 still have self-intersections ≤ −2 and hence (X, D) satisfies (5.4). If Eφ ∩ E2 �= ∅, 
then φ∗E2 = F p and φ contracts all components Fp ∩ D. So D1 ∩ Di ∩ F p �= ∅. And 

since j1 ≥ j2 > i, D2
i = D2

i + 1 ≤ −1. On the other hand, all components of D other 
than D1 and Di still have self-intersections ≤ −2. That is, Di is a circular boundary of 
type (λ1, λ2, ..., λi−1, λi) with λk = D

2
k = D2

k ≤ −2 for 2 ≤ k < i and λi = D
2
i ≤ −1. 

Therefore, the components of D−D1 still have negative definite intersection matrix. So 
(X, D) satisfies (5.4) again. �

Now we can complete the proof of Theorem 5.2.
Suppose that D = D1 + D2 + ... + Dn is a circular boundary of type (λ1, λ2, ..., λn)

with D2
i = λi ≤ −2 for all i �= 1. We argue by induction on rankZ Pic(X).

If rankZ Pic(X) > n, we may apply Lemma 5.5 to reduce rankZ Pic(X) by 1. If 
rankZ Pic(X) = n, we may contract the rod D2 +D3 + ... +Dn to obtain a log del Pezzo 
surface X of Picard rank 1. Indeed, we can be more precise about the singularity p: 
X has a cyclic quotient singularity at p given by C2/(exp(2πi/a), exp(2πib/a)), where

a

b
= −λ2 + 1

λ3 + 1
λ4 + ...

. (5.10)

5.3. Proof of Theorem 5.3

It suffices to blow up each Iitaka model X at some smooth points of D, called half point 
attachments by Iitaka, such that the resulting (X, D) is a log K3, i.e., h0(ΩX(logD)) = 0, 
and (X, D) fails (4.1) (see Fig. 4). If h0(ΩX(logD)) = r, we need to blow up r points, 
i.e., attach r half points.

For IIb-i, it suffices to blow up X ∼= P2 at one point on H1 and one point on H2. Then 
(X, D) fails (4.1) since all three components of D have self-intersections ≥ 0.
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Fig. 4. Log K3 surfaces of type IIb-i–IIb-viii without infinitely many A1 curves.

For IIb-ii, it suffices to blow up X ∼= F0 at one point on H1 and one point on G1. Then 
(X, D) fails (4.1) since all four components of D have self-intersections ≥ −1.

For IIb-iii, it suffices to blow up X ∼= Fβ at one point on F1 and one point on Δλ. After 
a sequence of pivot operations at F2, we arrive at a log isomorphism (X, D) ��� (X̂, D̂), 
where D̂ has four components with self-intersections −1, −1, 0, 0, respectively, and (4.1)
fails.

For IIb-iv, it suffices to blow up X ∼= P2 at one point on C. Then (X, D) fails (4.1)
since both components of D have self-intersections ≥ 1 (see Fig. 2).

For IIb-v, it suffices to blow up X ∼= F0 at one point on C1. Then (X, D) fails (4.1)
since both components of D have self-intersections ≥ 1.

For IIb-vi, it suffices to blow up X ∼= F2 at one point on Δ0. Then (X, D) fails (4.1)
since both components of D have self-intersections ≥ 1.
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For IIb-vii, it suffices to blow up X ∼= Fβ at one point on C3. After a sequence of pivot 
operations at F , we arrive at a log isomorphism (X, D) ��� (X̂, D̂), where D̂ has three 
components with self-intersections 0, 0, 1, respectively, and (4.1) fails.

For IIb-viii, it suffices to blow up X ∼= F0 at one point on C. Then (X, D) fails (4.1)
since all three components of D have self-intersections ≥ 0.
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