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1. Introduction

In this introduction, we work with varieties defined over an algebraically closed field k.

By the work of Graber–Harris–Starr [19] and de Jong–Starr [16], any smooth separably

rationally connected variety over a function field of a k-curve admits a rational point.

One can ask a similar question over the function field k(S), where S is a surface. Under

what conditions does a variety defined over k(S) admit a rational point?

There are two difficulties to find rational points on varieties over k(S). First, the

class of separably rationally connected varieties is too large to admit rational points.

By Tsen–Lang’s theorem [34], any hypersurface of degree d in the projective space Pn

such that d2 6 n over the function field k(S) admits a rational point and the bound

is sharp. This suggests that we should study varieties sharing the common geometric

features with hypersurfaces in the above range. These varieties are examples of rationally

simply connected varieties, introduced by de Jong and Starr [17]. Roughly speaking, they

are varieties admitting lots of rational surfaces.

Secondly, there are Brauer-type obstructions to the existence of rational points. Since

the Brauer group of k(S) is not trivial in general, any Brauer–Severi variety corresponding

to a nontrivial Brauer class has no rational point at all. On the other hand, the geometric

generic fiber is a projective space. Such cohomological obstructions can be explained as

a part of the elementary obstruction, discovered by Colliot-Thélène and Sansuc [13]. The

elementary obstruction vanishes if there is a rational point.

Combining the above two observations, de Jong and Starr formulated the following

principle.
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Principle 1.1 (de Jong–Starr [17]). A rationally simply connected variety defined over

k(S) admits a rational point if the elementary obstruction vanishes.

One piece of evidence for Principle 1.1 is de Jong–Starr’s proof for the period-index

theorem over k(S) [37]. It is equivalent to prove that Principle 1.1 holds for

Grassmannians. Later de Jong, He and Starr proved the following theorem.

Theorem 1.2 (de Jong–He–Starr [15]). A projective homogeneous space of Picard number

one over k(S) admits a rational point if the elementary obstruction vanishes.

The main ingredient of their work is to show that homogeneous spaces of Picard number

one are rationally simply connected. Combining the work of Colliot-Thélène, Gille, and

Parimala [12], Serre’s conjecture II over function fields of surfaces follows as a corollary.

In 2008, Borovoi, Colliot-Thélène, and Skorobogatov proved the following theorem.

Theorem 1.3 [4, Theorem 3.8]. Assuming the period-index theorem and Serre’s conjecture

II for the function field k(S) of a surface S, any homogeneous space of a connected linear

k(S)-group admits a rational point if the elementary obstruction vanishes.

Borovoi–Colliot-Thélène–Skorobogatov’s theorem also gives evidence of Principle 1.1

for homogeneous spaces under group actions defined over the base field.

In this paper we formulate the rational simple connectedness for projective

homogeneous varieties of higher Picard numbers. See Hypotheses 5.9–5.11. These are

geometric properties which can be checked after the base change to the algebraically

closure. As an application, we prove that Principle 1.1 holds for projective homogeneous

spaces with no assumptions on group actions.

Theorem 1.4. Let X be a projective variety defined over a function field of a surface.

Assume that the geometric generic fiber of X is of the form G/P for some linear algebraic

group G and parabolic subgroup P. Then X admits a rational point if and only if the

elementary obstruction vanishes.

Corollary 1.5 (Starr). Let G be a quasisplit simply connected semisimple k(S)-group.

Then every G-torsor admits a reduction of the structure group to the center of G.

Remark 1.6. By the recent work of Starr and Xu [40], the main techniques developed

in this paper (cf., Theorem 5.12 and Propositions 9.15, 10.1 and 10.6) implies that

Theorem 1.4 holds over global function fields as well.

1.1. Sketch of the proof of Theorem 1.4

Let K be the function field k(P1). Since the surface S admits a pencil of curves over P1

under blowups, the function field k(S) is the same as the function field K (C). Finding a

k(S)-rational point is equivalent to finding a K -section of a fibration π : X → C .

Let π : X → C be a smooth family of projective homogeneous spaces over a curve C .

The vanishing of the elementary obstruction is equivalent to the existence of a universal

torsor T [38]. Theorem 1.4 is proved by the following steps.
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Step 1. There exists a sequence of ‘canonically’ chosen irreducible components

{Z e(X/C/K )}e>e0 in the moduli space of sections of X/C .

Step 2. For each integer e, we can define an Abel map,

αT : Z e(X/C/K )→ {the classifying stack of torsors over C of degree e}

by pullback of the universal torsor to get a torsor over C . This is a generalization of the

classical Abel map to the intermediate Jacobian. The targets have coarse moduli spaces

as a sequence of abelian varieties {Ae
} with lots of K -rational points.

Step 3. We then analyze the geometric properties of the Abel map and prove that the

geometric generic fiber F of αT is rationally connected.

Step 4. Applying the result of Graber–Harris–Starr [19] on F , we have a section

σ : C → X defined over K .

In §§ 2–5, we deal with Step 2. Here we generalize the notion of universal torsors to the

relative setting, construct the Abel map and show its basic geometric properties. In § 6,

we define the sequence of components Z e as in Step 1 (Definition 6.7).

In §§ 7 and 8, we prove Step 3 under Hypothesis 5.9–5.11. See Theorem 8.9. In §§ 9 and

10, we verify all hypotheses for projective homogeneous spaces which finishes Step 3.

Section 11 is on discriminant avoidance which reduce the problem to treat with smooth

family only. We conclude with the proof of Theorem 1.4 and Corollary 1.5 in § 12.

2. Elementary obstructions and universal torsors

In this section, we first recall the elementary obstruction to the existence of rational

points of varieties over fields, then generalize this construction to the relative case which

gives an obstruction theory for the existence of sections. Throughout this section, we

work with sheaves and cohomology in the fppf site.

2.1. Elementary obstructions over a field

The standard references for elementary obstructions are Colliot-Thélène–Sansuc’s

original paper [13] and Skorobogatov’s book [38].

Let K be a field. Let X be a smooth projective K -variety and X be the base change of

X to the algebraic closure K . Let p : X → Spec K be the structure morphism.

The relative Picard scheme PicX/K = R1 p∗Gm is an fppf sheaf represented by a group

variety over K by [21, no 232, 3.1]. Let S be the character group of PicX/K , which is of

multiplicative type over K . When Pic(X) is finitely generated, it is uniquely determined

by S.

The set of isomorphism classes of S-torsors over X is classified by the cohomology group

H1(X, S). By [13, Théorème 1.5.1], there exists a long exact sequence of cohomological

groups.

0 −−−−→ H1(K , S) −−−−→ H1(X, S)
χ

−−−−→ HomK (PicX/K ,PicX/K )

∂
−−−−→ H2(K , S) −−−−→ H2(X, S)

(2.1)
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Definition 2.1. Assume that Pic(X) is a finitely generated abelian group. An S-torsor T
over X is universal if χ(T ) is the identity morphism on PicX/K .

Definition 2.2. Let Id be the identity morphism of PicX/K . The class e(X) := −∂(Id) ∈
H2(X, S) is called the elementary obstruction of the variety X over K .

Proposition 2.3. Assume that Pic(X) is finitely generated.

(1) The universal torsor exists if and only if the elementary obstruction e(X) vanishes.

(2) If X admits a K -rational point, then the universal torsor exists, or equivalently the

elementary obstruction e(X) vanishes.

Proof. The first part follows from the long exact sequence (2.1). Since a K -rational point

on X gives a left inverse of the map H2(K , S)→ H2(X, S) as in (2.1), the connecting

map ∂ is the zero map. In particular, the elementary obstruction e(X) vanishes.

Theorem 2.4 [38, Theorem 2.3.4]. Let X be a smooth projective K -variety. Assume that

Pic(X) is a finitely generated abelian group. The class e(X) ∈ H2(X, S) coincides with the

class of the following natural 2-fold extension of Galois modules.

1 −−−−→ Gm,X −−−−→ K (X)∗ −−−−→ Div(X) −−−−→ Pic(X) −−−−→ 0

Remark 2.5. One may use the above theorem to give a general definition of elementary

obstructions for smooth integral K -varieties without the assumption on the finite

generation of Picard groups. However, we prefer this definition via universal torsors

because we are mainly interested in the geometric aspect of the elementary obstruction.

The finite generation of Picard groups holds for smooth projective rationally connected

varieties.

2.2. Relative universal torsors

Hypothesis 2.6. Let K be a field. Let π : X → C be a flat projective family of varieties

over a smooth projective K -curve C . Assume that the family satisfies the following

conditions:

(1) The geometric fibers of π are reduced and irreducible. Hence by [21, no 232,

Theorem 3.1], the relative Picard functor PicX/C is represented by a separated

C-group scheme locally of finite type.

(2) Each closed subscheme of PicX/C which is of finite type is proper over C .

(3) The sheaves R1π∗OX and R2π∗OX are trivial and commute with base change.

(4) The geometric generic fiber of π is smooth and simply connected, i.e., no finite

étale cover.

Remark 2.7. (1) Condition (2) as above is very restrictive. But it holds for smooth

families by [7, p. 232, Theorem 3] and for families where the geometric fibers have

isolated parafactorial singularities [23, XI 3.1].
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(2) In characteristic zero, by [30, Theorem 7.1], if the general fiber is rationally

connected, the direct images Riπ∗OX vanish for i > 0. The base change property

holds if the geometric fibers have Du Bois singularities [14, 4.6]. In particular, it

holds for log canonical families [28].

(3) Kollár proved that any smooth projective separable rationally connected variety

over an algebraically closed field is simply connected [32, Theorem 13]. Thus

Condition (4) holds for projective families with general fibers smooth separable

rationally connected.

Proposition 2.8. Hypothesis 2.6 holds for the following families:

(1) smooth families of projective homogeneous spaces;

(2) Lefschetz pencils of hypersurfaces in Pn, where n > 5.

Proof. It suffices to check all the conditions in Hypothesis 2.6 for these families. For

smooth families of projective homogeneous spaces, Condition (1) is trivial and Condition

(2) holds by [7, p. 232, Theorem 3]. By proper and base change theorem [24, III.12.9],

Condition (3) is implied by h1(X t ,O) = h2(X t ,O) = 0 for every geometric fiber. When the

fiber is the full flag variety, this follows from Kempf’s vanishing theorem for line bundles

[27]. The general case then follows from the Leray spectral sequence. Since projective

homogeneous spaces are rational, in particular, separably rationally connected, Condition

(4) follows from the remark as above.

For a Lefschetz pencil of hypersurfaces in Pn , where n > 5, Condition (1) is trivial.

Since the singular fibers of the pencil are local complete intersections of dimension

> 4, by [23, XI, 3.13], they have isolated parafactorial singularities. Thus Condition (2)

follows. Vanishing of h1(X t ,O) and h2(X t ,O) gives Condition (3). Since every smooth

hypersurface in Pn with dimension at least two is simply connected [23, X, 3.10], we have

Condition (4).

Proposition 2.9. Assuming Hypothesis 2.6, the relative Picard functor PicX/C is

represented by a torsion-free finitely generated isotrivial twisted constant C-group scheme.

Proof. By [7, p. 231, Theorem 1 and Proposition 2] and condition (3) of the Hypothesis,

PicX/C is formally étale over C . Since PicX/C is of locally finite type over C , it is étale

over C . Together with condition (2), each irreducible component of PicX/C is finite étale

over C .

Let η be the generic point of C . The geometric generic fiber PicX/C (η) is isomorphic

to a constant group scheme with coefficient group Zr . Indeed, the dimension of each

connected component of PicXη/η is zero by the vanishing of R1π∗OX . Hence PicXη/η is the

Neron–Severi group, which is finitely generated by the theorem of the base change [6,

XIII, 5.1]. The torsion-freeness follows from the fact that every torsion line bundle gives

an unramified cyclic cover and the simple connectedness of the geometric generic fiber.

Now we may choose a basis of constant sections of the group scheme PicXη/η, denoted

by v1, . . . , vr . The section v1 dominates a connected component of PicX/C , say B1. After

taking the finite étale base change to B1, PicX/C ×C B1 is a B1-group scheme equipped with

a canonical section. We may take further finite étale base changes to get a B-group scheme
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with r canonical sections. The sections induce a natural map Zr
×C B → PicX/C ×C B

between B-group schemes. The map is dominant by checking over the geometric generic

fiber. Thus each connected component of PicX/C ×C B is dominated by B and finite étale

over B. In particular each component is isomorphic to B. This implies that after taking

the finite étale base change to B, PicX/C becomes a torsion-free finitely generated constant

group scheme. Hence by definition, it is isotrivial.

Recall that there is an anti-equivalence between the category of finitely generated

isotrivial twisted constant C-group schemes and the category of isotrivial finite type

C-group schemes of multiplicative type via the following functors; cf., [1, X, 5.1, 5.6, 5.9].

S 7→ Ŝ = HomC−gr (S,Gm,C )

M 7→ D(M) = HomC−gr (M,Gm,C ).

In particular, the category of torsion-free finitely generated twisted constant C-group

schemes corresponds to the category of C-tori.

Assuming Hypothesis 2.6, we now define a C-torus S = D(PicX/C ). There is the long

exact sequence, which is a relative version of (2.1).

0 −−−−→ H1(C, S) −−−−→ H1(X, S)
χ

−−−−→ HomC−gr (PicX/C ,PicX/C )

∂
−−−−→ H2(C, S) −−−−→ H2(X, S)

(2.2)

Let Id be the identity morphism of PicX/C .

Definition 2.10. Assuming Hypothesis 2.6, the class −∂(Id) ∈ H2(X, S) is called the

elementary obstruction for p : X → C . An S-torsor T over X is universal if χ(T ) is

the identity morphism on PicX/C .

Proposition 2.11. Assuming Hypothesis 2.6, we have the following:

(1) the universal torsor exists if and only if the elementary obstruction vanishes;

(2) if the fibration p : X → C has a section, then the universal torsor exists, or

equivalently the elementary obstruction vanishes.

Proof. The proof is the same as the absolute case in Proposition 2.3.

3. Stable sections and the Abel map

Let X be a smooth proper K -variety and assume that there exists a universal torsor T .

Then there is a natural classifying map:

αT : X (K ) = {K -rational points on X} → H1(K , S)

by pulling back the universal torsor [13, 2.7.2]. Thus we have a partition of rational points

on X indexed by elements in the Galois cohomology group H1(K , S). This map is crucial

in studying the behavior of rational points in number theory, e.g., R-equivalent classes

[13].

The main purpose of this section is to generalize this map in the relative setting

π : X → C as in Situation 2.6. In the relative setting, the classifying map is much more

https://doi.org/10.1017/S1474748017000081 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748017000081


Homogeneous space fibrations over surfaces 299

interesting because it carries algebraic structures. As we will see later, there is an algebraic

map from the moduli space of stable sections to certain abelian varieties, which generalizes

the construction in [15, § 6].

Hypothesis 3.1. Let π : X → C be a flat family of proper varieties over a connected

smooth projective K -curve C satisfying Hypothesis 2.6. Let S be the relative Neron–Severi

torus. Assume that the universal S-torsor T exists over X .

Let Sec(X/C/K ) be the moduli functor parametrizing families of sections of π : X → C .

The functor Sec(X/C/K ) is representable by a scheme which is a countable union of

quasi-projective varieties by [21, Part IV.4.c].

Let BSC/K be the classifying stack of S-torsors on C . When S is Gm,C , the classifying

stack is the Picard stack, which is an algebraic stack of finite type by [2, Appendix 2].

In [5, Chapter 4], he proved that the classifying stack of torsors under reductive group

scheme over a K -curve is a smooth algebraic stack locally of finite type.

We have a natural 1-morphism

α′T : Sec(S/C/K )→ BSC/K

by pullback of the universal torsor. Namely, given a family of sections σ : C ×K T → X
over a K -scheme T , s∗T gives a family of S-torsors over C . This is called the Abel map.

Definition 3.2. The stack of stable sections of the family π : X → C , denoted by

Σ(X/C/K ), is the fiber of the stabilization morphism

π∗ : Mg(C)(X)→ Mg(C)(C, [C])

over the identity map Id : C → C .

The natural 1-morphism Sec(X/C/K )→ Σ(X/C/K ) is represented by open

immersions of schemes. Thus the proper algebraic stack Σ(X/C/K ) is a compactification

of Sec(X/C/K ). It is natural to ask if the Abel map can be extended to the stack of

stable sections.

Proposition 3.3. Assuming that Hypothesis 3.1 holds, there exists a 1-morphism

αT : Σ(X/C/K )→ BSC/K

extending the Abel map α′T : Sec(X/C/K )→ BSC/K . Without ambiguity, we call the

extended map αT the Abel map.

Proof. A family of stable sections of π : X → C over a K -scheme T is equivalent to the

following commutative diagram.

C ′

f
��

σ // X ×K T

(π,IdT )yy

C ×K T

The pullback of the universal torsor gives an S-torsor T over C ′.
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Since S is a C-torus, there exists an étale morphism g : D→ C which splits S, i.e.,

S×C D is isomorphic to Gr
m,D. Let D′ be the fiber product (D×K T )×C×K T C ′.

D′
g′

−−−−→ C ′

f ′
y f

y
D×K T

g
−−−−→ C ×K T

By descent theory, any S-torsor over C ′ is equivalent to a Gr
m,D-torsor over D′

satisfying the descent datum. Let E be the pullback of T via g′, which is a Gr
m,D-torsor

over D′. In particular, E is a product E1× · · ·× Er of Gm,D-torsors over D′. Let

p1, p2 : D′×C ′ D′→ D′ be the natural projections. The descent datum is given by an

isomorphism

φ : p∗1E1× · · ·× p∗1Er ' p∗2E1× · · ·× p∗2Er (3.1)

satisfying the cocycle condition p∗13φ = p∗23φ ◦ p∗12φ. Let φi j : p∗1Ei → p∗2E j be the

component-wise morphism.

Now we apply the functor det(R f ′∗) to each factor of E ; cf., [15, Definition 3.11] and

[29]. We get a Gr
m,D-torsor F = det(R f ′∗E1)× · · ·× det(R f ′∗Er ) over D×K T . It is easy to

check that F is well defined.

We need to check that the torsor descends. First we construct an isomorphism

ψ : p∗1F ' p∗2F . Since the functor det(R f ′∗) commutes with the base change, it suffices

to construct a morphism ψ : det(R f ′∗ p∗1E1)× · · ·× det(R f ′∗ p∗1Er )→ det(R f ′∗ p∗2E1)× · · ·×

det(R f ′∗ p∗2Er ). This can be defined component-wise by det(R f ′∗φi j ). Write ψ as det(R f ′∗φ).
To check that ψ is an isomorphism, define the inverse det(R f ′∗φ

−1) as above and their

composition is just the matrix multiplication det(R f ′∗φ
−1) ◦ det(R f ′∗φ

−1) = det(R f ′∗Id)
= Id. The descent cocycle condition follows directly from the descent cocycle condition

for φ and the base change property of det(R f ′∗). Therefore, F descents to an S-torsor over

C .

When C ′ is C × T , the construction is the same as pullback of the universal torsor,

which coincides with the Abel map.

4. Rational curves on homogeneous spaces

Let k be an algebraically closed field of characteristic zero. Let X be a projective

homogeneous space under a linear algebraic k-group. By Bruhat decomposition, the

Picard lattice of X is freely generated by the line bundles associated to the Schubert

varieties of codimension one, denoted by L1, . . . ,Lr . The effective cone is generated by

Li ’s. Indeed, any effective divisor
∑r

i=1 aiLi intersects each Schubert curve non-negatively

by homogeneity. Thus by the intersection pairing, ai ’s are all non-negative. By

homogeneity again, we see that the effective cone coincides with the nef cone. Thus

the invertible sheaf L = L1+ · · ·+Lr is ample. Since X is simply connected and

homogeneous, by Stein factorization, the invertible sheaf L is in fact very ample. We

introduce some special curve classes on the projective homogeneous space X .
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Definition 4.1. (1) The degree of a curve C in X is the L-degree of C .

(2) The degree one curves in X are called lines.

(3) A curve (class) is simple if Li -degree is either zero or one for all i ’s.

(4) A curve (class) is maximal if Li -degree is one for all i ’s.

Note that any stable rational curve with a simple curve class type is automorphism-free.

The following result is a simple corollary of the main theorems in [18, 33].

Proposition 4.2. Let β be a simple curve class in X . The Kontsevich moduli space

M0,n(X, β) of pointed stable rational curves in X is a fine moduli space, represented

by a nonempty smooth projective rational variety.

5. The Abel sequences

Notation 5.1. Let K be a field of characteristic zero. Let C be a smooth connected

K -curve. Let π : X → C be a smooth family of projective homogeneous spaces. Assume

that the relative Picard number, i.e., the rank of PicX/C (C) is one. Assume that the

Picard number of the geometric generic fiber of π is r . Let S be the character C-group

scheme of PicX/C . Assume that the relative universal S-torsor T exists for the family.

By Proposition 2.8, the relative Picard scheme PicX/C is a torsion-free finitely generated

isotrivial twisted constant C-group scheme. Thus the character group scheme S is an

isotrivial C-torus.

Let η be the geometric generic point over C . We can choose a canonical basis of the

constant group scheme PicXη/η, denoted by L1, . . . ,Lr such that Li ’s are line bundles of

Xη associated to the Schubert cells of codimension one.

By [1, Exposé X Corollaries 1.2 and 5.7], the group scheme PicX/C is equivalent to

specifying the geometric fiber at η as a discrete continuous π1(C, p)-module, where p is

a geometric point of C .

Lemma 5.2. The geometric fiber of PicX/C at η is a discrete continuous permutation

π1(C, η)-module with the Galois invariant basis L1, . . . ,Lr .

Proof. It is well known that the geometric generic fiber of PicX/C at is a discrete

continuous permutation Gal(η/η)-module with the Galois invariant basis L1, . . . ,Lr ;

cf., [12, Proof of Lemma 5.6]. The lemma follows from the fact that the natural map

Gal(η/η)→ π1(C, η) is surjective by [22, Exposé V Proposition 8.2].

Construction 5.3. Since the rank of PicX/C (C) is one, L1, . . . ,Lr over η dominate a unique

connected component of PicX/C , denoted by D. By Proposition 2.9, D is a curve finite

étale over C . Denote the structure map D→ C by φ.

In fact, D admits the following Galois module interpretation. We choose a connected

finite Galois cover g : D̃→ C which completely splits L1, . . . ,Lr with the Galois group

0. In particular, 0 acts on the set {L1, . . . ,Lr } transitively with the stabilizer group 00
with respect to L1. Then D is isomorphic to D̃/00. Denote ψ : D̃→ D the quotient map.
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Furthermore, we have the following Cartesian diagram∐r
i=1 D̃ −−−−→ Dy φ

y
D̃

g
−−−−→ C.

The Neron–Severi torus S in our setup is indeed quasisplit.

Lemma 5.4 [10, Lemma 3.2]. S is isomorphic to RφGm,D.

Now we introduce a natural 1-morphism

R−1
φ : BSC/K → BGm,D

given by pulling back an S-torsor by φ to get a RφGm,D ×C D-torsor and then reducing

the structure group to Gm,D by the natural adjunction (projection). In fact, this is an

equivalence of stacks and the inverse 1-morphism is the Weil restriction functor Rφ ; cf.,

[1, XXIV 8.2].

Let PicD/K be the relative Picard scheme and let c : BGm,D → PicD/K be the coarse

moduli space map. Consider the Abel map defined in Proposition 3.3 and post-compose

with R−1
φ and the coarse moduli space map, we get the following.

Definition 5.5. In Situation 5.1, the Abel map for the family of homogeneous spaces

π : X → C with respect to the universal torsor T is the composition,

αT : Σ(X/C/K ) −−−−→ BSC/K
R−1
φ

−−−−→ BGm,D
c

−−−−→ PicD/K .

Let Σe(X/C/K ) be the inverse image α−1
T (Pice

D/K ). The number e is called the T -degree

for the families of stable sections.

Let σ : C ′→ X be a stable section corresponding to a geometric point of Σe(X/C/K ).
Then there exists a unique subcurve C0 of C ′ such that σ restricting on C0 is a honest

section. The curve C0 meets the rest of C ′ at finitely many points p1, . . . , pδ. In fact, σ

is obtained by the honest section σ0 attaching with δ stable rational curves C1, . . . ,Cδ
at p1, . . . , pδ, and the teeth lie in the fiber.

Let qi, j be the geometric points lying in the fiber of φ at pi , where j = 1, . . . , r .

Proposition 5.6. In Situation 5.1, let σ : C ′→ X be a stable section corresponding to a

geometric point of Σe(X/C/K ). Then there exists integers ei j such that the image under

the Abel map is

αT (σ ) = αT (σ0)⊗OD(Σi, j ei j qi, j ), (5.1)

and the set {ei1, . . . , eir } coincide with the set {deg(L1|Ci ), . . . , deg(Lr |Ci )}.

In particular, when we attach a vertical line to a section at p1, the term OD(Σ j e1 j q1, j )

becomes OD(q1, j ) for some j . So the T -degree increases by one. When we attach a vertical

maximal curve to a section at p1, the term OD(Σ j e1 j q1, j ) becomes OD(Σ j q1, j ). So the

T -degree increases by r .
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Proof. Since Weil restriction functor is compatible with the base change, the statement

can be checked by descent. Let g : D̃→ C be as in Construction (5.3). We have the

following diagram. ∐
D̃′

φ̃′

��

f̃ ′ ""

// D′

��

φ′

��

∐
D̃

g̃
//

φ̃

��

D

φ

��

D̃′

f̃
##

g′
// C ′

f
��

σ
// X

D̃ g
// C

σ0

??

Since D̃ splits the Picard lattice, the pullback g′∗σ ∗T is a Gr
m-torsor. The torsor T

being universal implies that g′∗σ ∗T is isomorphic to the Gr
m-torsor associated with

L1× · · ·×Lr [36, Proposition 8.1]. By the construction of the extended Abel map as in

Lemma 3.3, g∗αT (σ ) ∼= det(R f̃∗L1)× · · ·× det(R f̃∗Lr ). Since L1× · · ·×Lr is isomorphic

to Rφ̃′(
∐

Li ), we have that

g∗αT (σ ) ∼= det(R f̃∗L1)× · · ·× det(R f̃∗Lr ) ∼= Rφ̃

(∐
det(R f̃ ′∗Li )

)
.

Thus the Abel image αT (σ ) is given by descending the line bundle
∐

det(R f̃ ′∗Li ) to D.

Since
∐

D̃ is a disjoint union, it suffices to descend one line bundle det(R f̃ ′∗L1) from

ψ : D̃→ D.

We show the case when the stable section C ′ has only one rational curve C1 attaching

on σ0 at σ0(p). The general case can be proved similarly.

Choose a point s ∈ g−1(p) and let F be the maximal vertical rational subcurve in

g′−1(C1) through s. Since g is Galois over C , any vertical rational curve in g′−1(Ci ) is

expressed by γ (C), for some γ ∈ 0. By [15, Lemma 6.7], we have

det(R f̃ ′∗L1) = L1|D̃ ⊗OD̃

(∑
γ∈0

(L1.γ (F))γ (s)
)

(5.2)

= L1|D̃ ⊗OD̃

(∑
γ∈0

(γ−1(L1).F)γ (s)
)

(5.3)

where (∗.∗) is the intersection pairing. By assumption, we know that 0-orbit of L1 is the

set {L1, . . . ,Lr }. Descending (5.3) via ψ : D̃→ D gives the formula as in (5.1).

Definition 5.7. In Situation 5.1, let k be an algebraically closed field extension of K .

A section of π : Xk → Ck is m-free if for a general effective Cartier divisor D of Ck of

degree m,

H1(Ck, σ
∗Nσ(Ck )/Xk (−D)) = 0.
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A section is unobstructed if it is 0-free, and free if it is 1-free. A section is (g)-free if it is

(2g(Ck)+ 1)-free.

Definition 5.8. Let X/C/K and T be as in Situation 5.1. Let e0 be an integer. An Abel

sequence for X/C/K is a sequence (Ze)e>e0 of an irreducible component Ze ofΣe(X/C/K )
which is geometrically irreducible and satisfies the following properties.

(1) For every e > e0, a general point of Ze parametrizes a (g)-free section.

(2) For every e > e0, the Abel map restricted at Ze

αT : Ze → Pice
D/K

is surjective and the geometric generic fiber is integral and rationally connected.

(3) For every (g)-free section σ : C ⊗K K → X ⊗K K of T -degree e0, there exists an

integer δ0 such that for every integer δ > δ0, every stable section obtained by

attaching δ lines in the fiber to σ lies in Ze0+δ.

A pseudo Abel sequence is a sequence (Ze)e>e0 as above where (2) is replaced by the

weaker condition that the Abel map αT |Ze is surjective and the geometric generic fiber

is integral.

In Situation 5.1, we propose the following hypotheses.

Hypothesis 5.9. Let t be a geometric point of C . Let X t be the geometric fiber over t .
For any simple curve class β, the evaluation morphism

ev : M0,1(X t , β)→ X t

is smooth surjective with integral rationally connected geometric fibers.

Hypothesis 5.10. For some integer m, the evaluation morphism for two-pointed chains of

m maximal rational curves,

ev : Chn2(X/C,mθ)→ X ×C X

has smooth integral rationally connected general fibers.

Hypothesis 5.11 (See in Definition 8.2). Let η be the generic point of C . Let Xη be the

geometric generic fiber of π . There exists a very twisting maximal scroll in Xη.

Theorem 5.12. In Situation 5.1, assume that Hypotheses 5.9–5.11 hold. Then there exists

an Abel sequence for X/C/K .

Proof. By [39, Lemma 4.11], to prove the existence of an Abel sequence, it suffices to

prove when the base field K is uncountable and algebraically closed. Now Theorem 5.12

follows from Theorem 8.9.
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6. The sequence of components

Notation 6.1. Let k be an uncountable algebraically closed field of characteristic zero.

Let C be a smooth connected k-curve. Let π : X → C be a smooth family of projective

homogeneous spaces. Assume that the relative Picard number, i.e., the rank of PicX/C (C)
is one and assume that the Picard number of each geometric fiber is r . Let S be the

character C-group scheme of PicX/C . Let φ : D→ C be a finite étale morphism such that

S = RφGm,D as in (5.3). Assume that the universal S-torsor T exists for the family.

Lemma 6.2 [19]. Let X/C/k be as in Notation 6.1. Then there exist (g)-free sections.

de Jong, He and Starr [15] introduced an important class of stable sections, the

porcupines. They are unobstructed and have nice inductive structures.

Definition 6.3. A porcupine in X/C/k is a stable section σ : C ′→ X such that

(1) the associated section σ0 : C → X is (g)-free,

(2) each vertical curve σ |Ci : Ci → X ti is a line in the fiber of π ,

(3) the attaching points of vertical curves are all distinct on C .

We call the section σ0 the body, and the vertical curves the quills.

Recall the following standard deformation results in [39, Proposition 5.2].

Lemma 6.4. (1) The parameter space Porce(X/C/k) of porcupines of T -degree e is

represented by an open smooth subscheme of Σe(X/C/k).

(2) The closed subscheme Porce,>1(X/C/k) of Porce(X/C/k) parametrizing porcupines

with at least 1 quill is a simple normal crossing divisor.

(3) The open subscheme Porce,δ(X/C/k) of Porce(X/C/k) parametrizing porcupines

with exactly δ quills is a smooth, locally closed subscheme of Porce(X/C/k) of pure

codimension δ.

There is a natural morphism

8body : Porce,δ(X/C/k)→ Porce−δ,0(X/C/k)

which forgets all the δ quills. Let Dδ be the δ-fold symmetric product of D and let D◦δ
be the dense open subset of Dδ parametrizing reduced divisors with reduced images on

C . By Proposition 5.6, define the refined body morphism,

8′body : Porce,δ(X/C/k)→ Porce−δ,0(X/C/k)× D◦δ
which sends a porcupine σ : C ′→ X with δ quills to its body together with the attaching

divisor Bσ = OD(t1+ · · ·+ tδ) on D.

Lemma 6.5. In Situation 6.1, assume that Hypothesis 5.9 holds. The refined body

morphism

8′body : Porce,δ(X/C/k)→ Porce−δ,0(X/C/k)× D◦δ
is smooth surjective with irreducible rationally connected geometric fibers.
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Proof. Given a section σ in Porce−δ,0(X/C/k) and a reduced divisor B = t1+ · · ·+ tδ in

D◦δ , let F be the space of porcupines having the body σ and δ quills with the attaching

divisor B. For each ti , there is a unique line class li such that the attachment divisor is ti .
Let Fi be the fiber of the evaluation morphism M0,1(X/C, li )→ X over the point σ(φ(ti )).
By Hypothesis 5.9, Fi is a smooth integral rationally connected variety. Therefore, F is

the product of all Fi ’s, which is again a smooth integral rationally connected variety.

Lemma 6.6. In Situation 6.1, assume that Hypothesis 5.9 holds. Let Ze0 be an irreducible

component of Σe0(X/C/k) whose general points parametrize (g)-free sections. For every

e > e0, there exists a unique irreducible component Ze such that every porcupine with

body in Ze0 and with e− e0 quills lies in Ze.

Proof. Let Porce0,0(X/C/k)Z be the open subscheme of Ze0 parametrizing free sections.

The space of porcupines with the body in Porce0,0(X/C/k)Z and e− e0 quills is irreducible

by Lemma 6.5 and unobstructed by Lemma 6.4. Thus it is contained in a unique

irreducible component of Σe(X/C/k).

Definition 6.7. For every integer e > e0, Ze is the distinguished irreducible component of

Σe(X/C/k) associated to Ze0 .

Combining Lemma 6.6 and the proof of [39, Lemmas 5.7 and 5.8], we have the

irreducibility of the geometric generic fiber of the Abel map.

Proposition 6.8. In Situation 6.1, assume that Hypothesis 5.9 holds. For every

e > e0+ 2g(D)− 1, the Abel map

αT |Ze : Ze → Pice
D/K

is dominant with irreducible geometric generic fiber.

7. Pencils of simple combs

In this section, let X/C/k and T be as in Notation 6.1.

Definition 7.1. Let σ be a free section of X/C/k. A simple σ -comb is a stable section

of π : X → C with the body σ such that the vertical curves are simple stable rational

curves in the fiber with distinct attaching points on C .

A maximal comb is a simple comb with all the vertical curves maximal.

Definition 7.2. A two-pointed chain of rational curves in Σe(X/C/k) is useful if the

marked points and the nodes parametrize unobstructed non-stacky points in Σe(X/C/k).
We say that the two marked points are rationally equivalent.

Lemma 7.3. Any simple comb of T -degree e lies in the unobstructed non-stacky locus of

Σe(X/C/k).
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Proof. For any simple comb, the body is a free section and vertical curves are free. By

[31, II.7.5], the comb is unobstructed. By Proposition 4.2, any vertical curves of a simple

comb is non-stacky. Thus the comb itself is non-stacky.

Lemma 7.4. In Situation 6.1, assume that Hypothesis 5.9 holds. Let P ∈ Σe(X/C) be a

porcupine with the body σ and δ-quills. Let Q be a simple σ -comb. If the Abel images

αT (P) and αT (Q) are the same, P and Q are rationally equivalent in Σe(X/C).

Proof. Since P and Q share the same body, by Proposition 5.6, the attaching divisors

BP and BQ are linearly equivalent divisors on D. Thus there exists a pencil P1
→ Dδ

connecting them. The pencil gives a rational curve in Porce−δ,0(X/C/k)× Dδ by the

following composition.

P1
−−−−→ Dδ

(s,Id)
−−−−→ Porce−δ,0(X/C/k)× Dδ

Since the attaching divisor BP is in D◦δ , the rational curve intersects the image of the

refined body morphism 8′body : Porce,δ(X/C/k)→ Porce−δ,0(X/C/k)× Dδ by Lemma 6.5.

By the result of Graber–Harris–Starr [19], we can lift to a rational curve in Σe(X/C/k)
whose general points parametrize porcupines. Specializing the family of porcupines over

BQ , we get a simple σ -comb Q′ with the attaching divisor BQ . Lemma 7.3 implies that P
and Q′ are rationally equivalent. By Hypothesis 5.9, Q and Q′ are connected by a useful

chain of rational curves in Σe(X/C/k). Therefore, P and Q are rationally equivalent.

Definition 7.5. A maximal scroll R in X/C is a morphism r : R→ X such that R→ C
is a smooth geometrically generic ruled surface and each fiber maps to a maximal curve

with at most two irreducible components. We say that r(R) is the image of the maximal

scroll R.

A chain of m maximal scrolls is transversal if each fiber maps to a chain of m maximal

curves with at most m+ 1 irreducible components.

Lemma 7.6. In Situation 6.1, assume that Hypothesis 5.9 holds. Assume that there exists

two sections s0 and s∞ on a maximal scroll R→ C such that the corresponding sections

σ0 := r(s0) and σ∞ := r(s∞) on X are free over C. Then there exists an integer N such

that a general maximal σ0-comb C with N -teeth is rationally equivalent to a simple

σ∞-comb.

Proof. For any effective divisor D on C , let RD be the pullback divisor on R. When D
is general, RD is a disjoint union of smooth maximal curves. There exists an integer

N such that for a general divisor D of degree N , the linear system |s0(C)+ RD| is

sufficiently ample and the codimension one points of the linear system parametrize nodal

curves; cf. [15, Lemma 9.5]. In particular, the divisor s0(C)+ RD is linearly equivalent

to some divisor s∞(C)+ E . Since the maximal scroll contains singular fibers like a union

of two simple curves, here r(E) is a disjoint union of simple rational curves. Let P be

the maximal σ0-comb associated to r(s0(C)+ RD) and let Q be the simple σ∞-comb

associated to r(s∞(C)+ E). There is a union of two general pencils joining P and Q
such that general points parametrize nodal divisors, i.e., P is rationally equivalent to Q.
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This proves Lemma 7.6 when the maximal σ0-comb is contained in the image of R.

For the general case, there exists a useful chain of rational curves parametrizing the

family of maximal σ0-combs by pushing all vertical maximal curves into the scroll R by

Hypothesis 5.9.

Proposition 7.7. In Situation 6.1, assume that Hypothesis 5.9 and 5.10 hold. Let σ0,

σ∞ be two (g)-free sections of π : X → C. Let T0, resp. T∞ be the unique irreducible

component of Σ(X/C/k) containing σ0, resp. σ∞ as a smooth point. Then there exists

an irreducible open subset T ⊂ Sec(Chn2(X/C,mθ)/C) satisfying the following:

(1) T parametrizes a family of transversal chains of m maximal scrolls;

(2) ev0,∞|T : T → Sec(X/C)×Sec(X/C) dominates T0× T∞;

(3) For each τ in T , evi ◦ τ : C → X gives a free section for i = 1, . . . ,m− 1, where evi
is the evaluation morphism of a node on a chain.

Chn2(X/C,mθ)

Chn2

��

ev0,∞
''

evi

**X × X
(π,π)

ww

X

π

ttC

Proof. Consider the following commutative diagram.

V = Chn2(X/C,mθ)

Chn2

��

ev0,∞

��

C × T

��

oo

X × X

(π,π)

ww

C × T0× T∞

rr

oo

C

By [15, Lemmas 4.12, 4.17, Proposition 4.15], there exists a variety T parametrizing free

sections of Chn2 : V → C and a dominant morphism T → T0× T∞, such that the above

diagram commutes.

Since T parametrizes free sections and evi : Chn2(X/C,mθ)→ X is smooth, (3) follows

from [25, Lemma 3.6] Lemma 3.6.

Finally, it suffices to show that a general section τ : C → Chn2(X/C,mθ) in T gives a

transversal chain of m maximal scrolls. There exists a simple normal crossing divisor 1 in

Chn2(X/C,mθ) parametrizing chains of m maximal curves with at least m+ 1 irreducible

components. Since τ is free, a general deformation of τ intersects the boundary strata 1
transversally by [31, II.3.7].
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Proposition 7.8. In Situation 6.1, assume that Hypothesis 5.9 and 5.10 hold. Let T0,

resp, T∞ be an irreducible component of Σ(X/C/k) whose general point parameterizes a

(g)-free section of T -degree e0, resp, e∞. Let Porce(X/C/k)T0 , resp, Porce(X/C/k)T∞ be

the moduli space of porcupines with bodies in T0, resp, T∞.

Then there exists an integer E such that for any integer e > E there exists a dense

open subscheme

U ⊂ Porce(X/C/k)T0 ×αT ,Pice
D/k ,αT

Porce(X/C/k)T∞

in which any pair of porcupines (P0, P∞) are rationally equivalent in Σe(X/C/k).

Proof. For a general pair of (g)-free sections (σ0, σ∞), by Proposition 7.7, there is a

transversal chain of m maximal scrolls connecting them. Let R1, . . . , Rm be the maximal

scrolls and let σ1, . . . , σm−1 be the intermediate sections. Let Ni be the integer as in

Lemma 7.6 for the pair (Ri , σi−1, σi ). Choose E = max{e0, e∞}+ 2g(D)+ r
∑m

i=1 Ni . For

any integer e > E , let P0 be a general porcupine of T -degree e with the body σ0. By

Lemma 7.4 and Proposition 6.5, P0 is rationally equivalent to a general simple σ0-comb

Q0 such that the teeth are the union of N1+ · · ·+ Nm general maximal curves and lines.

By Lemma 7.6, there exists a useful chain connecting the sub-σ0-comb of Q0 with the

teeth N1-maximal curves and a simple σ1-comb. The remaining teeth of Q0 deform along

the rational chain by Hypothesis 5.9. Therefore, P0 is rationally equivalent to a simple

σ1-comb P ′1 with at least N2+ · · ·+ Nm maximal curves. We can continue by applying

Lemma 7.6 until we get a simple σ∞-comb P ′∞. By Lemma 7.4 again, P ′∞ is rationally

equivalent to a general porcupine P∞ having the body σ∞ and the same Abel image

as P0.

Corollary 7.9. In Situation 6.1, assume that Hypothesis 5.9 and 5.10 hold. Let (Ze)e>e0

be the sequence of irreducible components of Σ(X/C/k) defined in (6.7). Then (Ze)e>e0

is a pseudo Abel sequence for X/C/k.

Proof. By Lemma 6.6 and Proposition 6.8, it suffices to show that the sequence satisfies

condition (3) of the pseudo Abel sequence. Let σ be a (g)-free section. By Proposition 7.8,

the porcupine obtained by attaching sufficiently many quills is rationally equivalent to a

porcupine in Ze. Since useful chains do not leave Ze, it lies in Ze.

8. Twisting maximal scrolls and the Abel sequence

In this section, let X/C/k and T be as in Notation 6.1. Let ξ : C → M0,1(X/C, θ) be a

1-morphism. This is equivalent to a family of pointed rational maximal curves over C as

the following.

R

p
��

ev // X

π
��

C

σ

@@

Let D be the divisor σ(C) in R.
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Definition 8.1. We say that a section s of X/C is penned in a maximal scroll R if it

coincides with the section ev ◦ σ(C) in the scroll R.

Definition 8.2. The 1-morphism ξ : C → M0,1(X/C, θ) is a m-twisting maximal scroll if

the pair (R, D) determined by ξ satisfies the following properties:

(1) R is a maximal scroll in X ;

(2) The sheaf OR(D) is globally generated and non-special;

(3) The normal bundle NR/X is globally generated and non-special;

(4) For every divisor 0 on C of degree 6 m, H1(R, NR/X (−D)⊗OR p∗OC (−0))) = 0.

When m = 2, we say that ξ is very twisting maximal scroll.

Proposition 8.3 [39, Lemma 7.3]. The 1-morphism ξ : C → M0,1(X/C, θ) is a m-twisting

maximal scroll if and only if it satisfies the following:

(1) ξ(C) intersects the boundary divisor of M0,1(X/C, θ) transversally;

(2) The sheaf p∗OR(D) is globally generated and non-special;

(3) The composition ev ◦ ξ : C → X is a free section;

(4) The sheaf ξ∗Tev ⊗OC OC (−0) is globally generated and non-special for every divisor

0 on C of degree 6 m.

When g(C) = 0, condition (2) is equivalent to that ξ∗T8 is globally generated and

non-special.

Definition 8.4. Let Y be a projective homogeneous space over an algebraically closed

field of characteristic zero. A maximal scroll ζ : P1
→ M0,1(Y, θ) is very twisting if the

induced morphism P1
→ M0,1(Y ×P1/P1, θ) is very twisting.

A very twisting maximal scroll in Y is wonderful if both sheaves p∗OR(D) and

p∗NR/X×P1 are ample.

Lemma 8.5 [15, Lemma 12.8]. Let Y be a projective homogeneous space over algebraically

closed field of characteristic zero. If Y has a very twisting maximal scroll, then there exist

wonderful m-twisting maximal scrolls for arbitrary m > 0.

Lemma 8.6. In Situation 6.1, assume that Hypothesis 5.9 holds. Every section is penned

in a maximal scroll in X/C.

Proof. Let σ be a section of π : X → C . Consider the following fiber product.

F //

ev′

��

M0,1(X/C, θ)

ev
��

C σ // X

By hypothesis 5.9, F is smooth over C with rationally connected geometric fibers. By

[19], there exists a section ξ : C → M0,1(X/C, θ). By attaching sufficiently many very
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free curves in the fiber of ev′ on ξ , a general deformation of the comb parametrizes a free

section and thus intersects the boundary strata 1 transversally by [31, II.3.7].

Proposition 8.7. In Situation 6.1, assume that Hypothesis 5.9–5.11 hold. Let (Ze)e>e0

be the pseudo Abel sequence in Corollary 7.9. For every e > e0 � 0, the irreducible

component Ze contains a section σ which is penned in a very twisting maximal scroll.

Proof. Let σ be a free section in Ze0 . By Lemma 8.6, σ is penned in a maximal scroll R
in X/C which corresponds to a 1-morphism ρ : C → M0,1(X/C, θ). Deforming ρ a little

bit, we may assume that a general pointed rulings of Rt is contained in the dense open

subset of M0,1(X/C, θ) swept out by a fixed wonderful very twisting maximal scroll g in

some fiber of π ; cf., [15, Lemma 12.9].

Now there are arbitrarily many wonderful very twisting scrolls gti : P1
→ M0,1(X ti , θ)

such that gti (0) = ρ(ti ) and they are algebraically equivalent to g. Gluing gti ’s on ρ at

ρ(ti )’s, we construct a comb C ∪∪i gti → M0,1(X/C, θ). By [15, Lemma 12.11] and the

standard comb smoothing argument, there exists r0, for any t > t0, after attaching r
wonderful very twisting scrolls, a general point smoothing ξ of the comb corresponds to

a very twisting maximal scroll in X/C . If the T -degree of the section σg in the wonderful

scroll g is d, the section σξ in the maximal scroll ξ is of T -degree e0+ td. Since the

sections in gti ’s are free rational curves in X ti , the section σξ lies in Ze0+rd . This proves

the proposition when e = e0+ rd.

The general case follows by repeating the above argument for sections in

Ze0+1, . . . , Ze0+d−1.

Corollary 8.8. Notations and assumptions are as in Proposition 8.7. Let Ce+r,θ be the

moduli space of maximal combs with exactly one tooth and with the bodies in Ze. Then

a general maximal comb in Ce+r,θ is contained in the image of a very twisting maximal

scroll for e � 0.

Proof. By Proposition 8.7, choose e � 0 such that a general point of Ze is contained in

a very twisting maximal scroll. It suffices to show that a deformation of combs in Ce+r,θ
can be followed by a deformation of twisting maximal scrolls containing the combs. This

follows from H1(R, NR/X (−σ − Rq)) = 0.

Theorem 8.9. In Situation 6.1, assume that Hypothesis 5.9–5.11 hold. For e0 � 0, the

pseudo Abel sequence in Corollary 7.9 is an Abel sequence for X/C/k.

Proof. By Corollary 7.9, it suffices to show that for any e > e0 � 0, the extended Abel

map

α : Ze → PicD/k

has rationally connected geometric generic fibers. Since the target is an abelian variety,

we do not worry about the rationally equivalent classes leaving the fiber of the Abel map.

We choose an integer e0 such that for any e > e0, Corollary 8.8 holds. For any e > e0+ r ,

there exists an open Ue,θ ⊂ Ce,θ such that every comb is contained in a very twisting

maximal scroll. By [15, Lemma 12.5], every comb in Ue,θ is rationally equivalent to a
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point in the interior of Ze. Since Ue,θ is of codimension one in Ze, a general point of Ze
is rationally equivalent to a general point of Ue,θ .

Similarly, if e > e0+ 2r , a general point Ze−r is rationally equivalent to a general

point in Ce−r,θ . Also note that the forgetting-tooth map Ce,θ → Ze−r ×C has rationally

connected geometric fibers by Hypothesis 5.9. Thus a general point in Ce,θ is rationally

equivalent to a general point in Ce,2θ , i.e., a general maximal comb with exactly two

quills.

For any i = 0, . . . , r − 1 and for any d > 0, let e = e0+ i + dr . By repeating the

argument above, a general point in Ze is rationally equivalent to a general point in

Ce,dθ with body in Ze0+i .

By the proof of Proposition 7.8, for each i , there exists Ei such that two general points

in Ce,dθ with the same Abel images are rationally equivalent if d > Ei .

Let E = maxi {Ei }. For any e > e0+ r E , given two general points in Ze with the same

Abel images, each of them is rationally equivalent to a general point in Ce,dθ . From

previous paragraph, they are rationally equivalent in Ze.

9. Very twisting maximal scrolls on homogeneous spaces

Let X be a projective homogeneous space over an algebraically closed field k of

characteristic zero. Let θ be the maximal curve class. Let ζ : P1
→ M0,1(X, θ) be a

1-morphism. We have the following diagram,

P1 ζ
// M0,1(X, θ)

8

��

ev // X

M0,0(X, θ)

where 8 is the forgetful map and ev is the evaluation map. By homogeneity and generic

smoothness, the evaluation map ev is a smooth morphism. In particular, the relative

tangent bundle Tev is locally free.

Definition 9.1. The 1-morphism ζ : P1
→ M0,1(X, θ) is very twisting if the following

conditions hold:

(1) the vector bundle ζ ∗Tev is ample;

(2) the vector bundle (ev ◦ ζ )∗T X is globally generated;

(3) the image ζ(P1) is in the smooth locus of the forgetful map 8 and the line bundle

ζ ∗T8 is globally generated.

In this case, we say that X admits a very twisting maximal scroll.

Remark 9.2. The definition of a very twisting 1-morphism over any variety is given in [25,

4.3]. It is still open how to find a very twisting 1-morphism on varieties in general. The

only known examples are general low degree complete intersections in Pn and projective

homogeneous spaces of Picard number one (cf. [15]). In these cases, one can construct

a very twisting scroll of the minimal curve class type. On the other hand, for varieties
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with higher Picard numbers, a very twisting morphism usually does not exist for minimal

curve classes. Thus the existence result depends on the choice of a ‘good’ curve class.

For smooth quadric surfaces in P3, there is no twisting surface scrolls of a minimal curve

class.

Lemma 9.3. X admits a very twisting maximal scroll if there exists an 1-morphism ζ :

P1
→ M0,1(X, θ) such that

(1) the sheaf ζ ∗Tev is ample;

(2) the image ζ(P1) is in the smooth locus of the forgetful map 8 and the line bundle

ζ ∗T8 is globally generated.

Proof. Since X is convex, every rational curve on X is free. In particular, (ev ◦ ζ )∗T X is

globally generated.

We may assume that X is a projective homogeneous space under a connected semisimple

linear algebraic k-group G. Let T ⊂ G be a maximal torus.

Let Gm ⊂ T be a one-dimensional torus corresponding to an interior point of a Weyl

chamber. We recall basic properties of Bialynicki-Birula decompositions of X under the

torus action. See [3, 33]. The fixed points under the torus action are isolated. For each p ∈
X Gm , let Ap be the set of points x ∈ X such that limt→0 t · x = p. By [33, Proposition 1],

Ap is isomorphic to the affine space Cl(p), where l(p) is the number of positive weights

of the Gm-representation at Tp X .

Let s, x1, . . . , xr ∈ XGm be the fixed points corresponding to the unique maximal

dimensional stratum As and the set of all codimension one strata, A1, . . . , Ar respectively.

Let U be the union of A1, . . . , Ar and As , which is a dense open of X with the complement

at least codimension two.

If we take the inverse torus action on X , there exists 1-dimensional strata A′1, . . . , A′r
corresponding to the fixed point x1, . . . , xr . Let Pi be the closure of Ai , which is a smooth

Gm-invariant rational curve connecting s and xi . We call Pi ’s the standard lines on G/P
with respect to the Gm-action. By [33], they generate the cone of effective curve classes

of G/P.

Lemma 9.4. The curve Pi is the unique Gm-invariant curve connecting s and xi .

Proof. By [33, Proposition 1], there exists a Gm-invariant open subset of X containing

xi which is Gm-equivalent to a definite vector space representation Vi such that the

positive weight subspace of Vi is of codimension one. Thus Pi is the closure of the unique

Gm-invariant curve in Vi whose general point intersects As .

Definition 9.5. Fix a Gm-action on X as above. A pointed maximal stable rational curve

f : (C, t0)→ X is transversal, if it satisfies the following properties:

(1) The image of f (C) lies in U .

(2) The curve intersects Ai transversally at f (ti ).

(3) The marked point f (t0) is in As .
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A transversal maximal pointed rational curve f gives an (r + 1)-pointed rational curve

C ′ = (C, t0, t1, . . . , tr ).

Proposition 9.6. Given a transversal pointed maximal stable curve f in X , the limit

limt→0 t · f in M0,1(X, θ) is a Gm-invariant pointed maximal stable rational curve

f0 : (F, p)→ X such that

(1) F is obtained by gluing P1
i ’s along the markings ti ’s of C ′, for i = 1, . . . , r ,

(2) The marking p is the point t0 on C ′,

(3) the map f0 maps P1
i ’s to Pi and contracts C ′ to xs .

Proof. By Proposition 4.2, M0,1(X, θ) is a smooth projective variety. Thus the limit

under the torus action exists without the semistable reduction. The rest follows from

[33, Proposition 2].

There exists a natural map,

ε : M0,1+r → M0,1(X, θ)

constructed as above. In fact, the morphism ε is an isomorphism to its image by [33].

The Gm-action on X induces the Gm-action on M0,1(X, θ). By [3] and Proposition 4.2,

we consider the Bialynicki-Birula decomposition under the Gm-action on M0,1(X, θ).

Corollary 9.7. Let B be the image ε(M0,1+r ). The fixed locus B is a smooth irreducible

component of the Gm-fixed point set in M0,1(X, θ) and the Bialynicki-Birula stratum

corresponding to B is of maximal dimensional.

Proof. The smoothness of B is proved in [3, Theorem 2.1]. A general maximal curve in

M0,1(X, θ) is transversal by Kleiman–Bertini Theorem. By Proposition 9.6, it retracts to

ε(M0,1+r ) under the Gm-action. Thus there exists a dense open Gm-invariant subset

of M0,1(X, θ) retracting to the fixed point locus B, which by definition lies in the

Bialynicki-Birula stratum of B.

Lemma 9.8. There exists an embedded rational curve in the fixed component B such that

the pullback of T8 and the normal bundle are positive.

Proof. With the discussion as above, the morphism ε : M0,1+r → B is an isomorphism.

Consider the forgetful map F0 : M0,1+r → M0,r by forgetting the first marked point. The

fibers of F0 give free curves in M0,1+r such that the pullback of T8 is ample. We can

choose a very free curve in M0,r and lift it to a rational curve D in M0,1+r . After attaching

sufficiently many fibered curves of F0 to D, a general smoothing of the comb yields the

desired property.

Now we consider the inverse Gm-action on M0,1(X, θ). By Corollary 9.7, There exists

a fixed point component B ′ whose Bialynicki-Birula stratum is of maximal dimension.

Let f : (C, p)→ X be a general maximal rational curve in X . We may assume that

[ f ] lies in both Bialynicki-Birula strata corresponding to B and B ′. Let ζ : P1
→

M0,1(X, θ) be a Gm-orbit curve of [ f ]. The image ζ(0), resp., ζ(∞) corresponds to a
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Gm-invariant curve [ f0] in B, resp., [ f∞] in B ′. By [3, Theorem 4.3], we have the following

Gm-equivariant decomposition of the tangent spaces,

T[ f0]M0,1(X, θ) = T[ f0]B⊕ T[ f0]M0,1(X, θ)+,

T[ f∞]M0,1(X, θ) = T[ f∞]B
′
⊕ T[ f∞]M0,1(X, θ)−.

Here the Gm-actions on T[ f0]B and T[ f∞]B are both trivial and T[ f0]M0,1(X, θ)+

(T[ f∞]M0,1(X, θ)−) corresponds to the positive (negative) weight Gm-invariant subspace.

Since the evaluation map ev : M0,1(X, θ)→ X is Gm-equivariant and smooth, we have

the sub-decompositions of Tev:

Tev,[ f0] = T[ f0]B⊕ T+ev,[ f0]
,

Tev,[ f∞] = T[ f∞]B
′
⊕ T−ev,[ f∞].

The decomposition of weight spaces at Tev,[ f0] uniquely determines a decomposition of

the Gm-equivariant vector bundle ζ ∗Tev, i.e.,

ζ ∗Tev = E0
⊕ E+,

where E0
|[ f0] = T[ f0]B and E+|[ f0] = T+ev,[ f0]

.

Proposition 9.9. A general Gm-orbit curve ζ : P1
→ M0,1(X, θ) satisfies the following:

(1) The sheaf E0 is a semi-positive vector bundle over P1.

(2) The sheaf E+ is a positive vector bundle over P1.

(3) The image ζ(P1) is in the smooth locus of 8 when r 6= 2. The line bundle ζ ∗T8 is

positive when r = 1, and is trivial when r > 3.

Proof. By the definition of E0 and E+ as above, the weights of E0, resp., E+ at 0 are

trivial, resp., positive. The weights of E0 and E+ at ∞ are both non-positive. Since the

degree of any Gm-equivariant line bundle equals the difference of the weight at 0 and the

weight at ∞, we get (1) and (2).

For (3), note that ζ ∗T8 is a Gm-equivariant vector bundle on P1. When r = 1, the curve

[ f0] is a pointed line L in X by Proposition 9.6. Thus T8,[ f0] is isomorphic to Tp L as a

vector space. The weight is positive because the marked point is a retracting fixed point.

Similarly, the weight at T8,[ f∞] is negative. Hence ζ ∗T8 is a positive line bundle.

When r > 3, the marked point on [ f0], resp. [ f∞] lies in the contracted component and

as well as in the smooth locus of 8. Thus the weight at 0 and ∞ are both trivial under

the torus action, i.e., ζ ∗T8 is a trivial vector bundle.

Proposition 9.10. When the Picard number of the homogeneous space X is either one or

two, there exists a very twisting maximal scroll on X .

Proof. With the same notations as above, in either case, the fixed locus B which

corresponds to the maximal Bialynicki-Birula cell is a point. Hence, as in Proposition 9.9,

for a general Gm-orbit curve ζ , there is no E0-summand in Tev. Thus the weights of the

Gm-vector bundle ζ ∗Tev at 0, resp., at ∞, are all positive, resp., negative. Therefore,

ζ ∗Tev decomposes into a direct sum of line bundles with degrees > 2.
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When the Picard number is one, by Lemma 9.3 and the third part in Proposition 9.9,

we win.

When the Picard number of X is two, we have trouble analyzing T8 because the two

Gm-fixed points ζ(0) and ζ(∞) lie in the singular locus of 8. However, the singular locus

of 8 in M0,1(X, θ) is of codimension two. Note that the orbit curve ζ is free in M0,1(X, θ).
Hence, a general deformation ξ : P1

→ M0,1(X, θ) of ζ avoids the singular locus of 8 and

intersects the boundary divisors of M0,1(X, θ) transversally. The pullback of the universal

family over M0,1(X, θ) over ξ gives a smooth surface S over P1 with a section D. The

sheaf ξ∗Tev is positive by upper semi-continuity. The degree of the line bundle ξ∗T8 is

the self-intersection number (D.D) on S, which is constant in the deformed family. Thus

it suffices to check for ζ . The marked point in universal family over ζ gives a section in

the smooth locus with self-intersection zero. See [33, Proposition 2]. In particular, ξ∗Tφ
is trivial. By Lemma 9.3, a general deformation of ζ gives a very twisting maximal scroll

on X .

To construct a very twisting surface maximal scroll on projective homogeneous space

of higher Picard numbers, the main idea is to glue a bunch of ‘nearly’ very twisting scrolls

as above properly whose general smoothing is very twisting.

Construction 9.11. Let X be projective homogeneous spaces with the Picard number

greater than two. The Gm-fixed component B in (9.7) has positive dimension. By

Lemma 9.8, there exists a rational curve D in B such that both ND|B and T8|D are

positive vector bundles. Since D is very free, we may choose distinct points p1, . . . , pk
on D, where pi is the limit point of a Gm-orbit curve Ci as in Proposition 9.9. Let C be

the disjoint union
∐k

i=1 Ci . Consider the comb D∗ = D+
∑k

i=1 Ci = D+C obtained by

attaching each Gm-orbit curve Ci on D at pi .

Lemma 9.12. After attaching sufficiently many general Ci ’s on D, the comb D∗ can be

smoothed.

Proof. By [19, Lemma 2.6], the normal sheaf ND∗ restricted on D is the sheaf of rational

sections of ND having at most a simple pole at each pi in the normal direction determined

by Tpi Ci . By the short exact sequence,

0 −−−−→ ND|B −−−−→ ND −−−−→ NB |D −−−−→ 0

the normal directions in ND determined by Tpi Ci ’s give nonzero general directions in

NB |D. Thus the quotient bundle M = ND∗ |D/ND|B is the sheaf of rational sections of

NB |D having at most a simple pole at each pi in the normal direction determined by

Tpi Ci . By [19, Lemma 2.5], after attaching sufficiently many general Ci ’s, M is globally

generated. Together with the positivity of ND|B , the sheaf ND∗ |D is globally generated.

Since all Ci ’s are free, by diagram chasing, the normal sheaf ND∗ is globally generated.

In particular, the comb D∗ is unobstructed and the nodes can be smoothed.
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Choose a smoothing of D∗ over a smooth pointed curve (T, 0) as the following,

D∗

��

� � // S

p

��

� � // M0,1(X, θ)

0 // (T, 0)

where S is a smooth surface. Let E be the pullback bundle of Tev to S. Let E0
i , resp., E+i

be the trivial, resp., positive sub-bundle of Tev restricted to each Ci . Let T be the vector

bundle
∐

E+i over C . Since T is a direct summand of E |C , we have the following natural

surjection.

E∨→ E∨|C → T ∨.

Let K∨ be the elementary transform of E∨ along T ∨.

0 −−−−→ K∨ −−−−→ E∨ −−−−→ T ∨ −−−−→ 0. (9.1)

Dualizing the above short exact sequence, we get

0 −−−−→ E −−−−→ K −−−−→ T ⊗OC OC (C) −−−−→ 0. (9.2)

Lemma 9.13. For any i = 1, . . . , k, h1(Ci ,K|Ci (−pi )) = 0.

Proof. Restricting the short exact sequence (9.1) to Ci and applying the functor

HomOCi
( ,OCi ), we get the following exact sequence

0 −−−−→ E+i −−−−→ E |Ci −−−−→ K|Ci −−−−→ E+i ⊗OCi
OCi (Ci ) −−−−→ 0.

The quotient bundle E |Ci /E+i is E0
i and the last term of the exact sequence is isomorphic

to E+i (−pi ). In particular, we have

0 −−−−→ E0
i (−pi ) −−−−→ K|Ci (−pi ) −−−−→ E+i (−2pi ) −−−−→ 0.

Note that over Ci , E0
i is trivial and E+i is positive. We win.

Let s1 and s2 be two sections of p both of which specialize to two distinct point q1, q2
on D∗\C .

Lemma 9.14. We have h1(D,K|D(−p1− p2)) = 0, after attaching sufficiently many Ci ’s

on D.

Proof. Restricting the short exact sequence (9.1) to D, we get

K∨|D −−−−→ E∨|D −−−−→ T∨|D −−−−→ 0.

The above sequence is actually exact. Indeed, by restricting (9.2) to D and taking the

dual over D, since T ⊗OC OC (C)|D is torsion, we have the injection from K∨|D to E∨|D.

In other words, the vector bundle K∨|D is the elementary transform up of E |D along

pi ’s with the specific directions in E+i ’s. Since the sub-bundle T B|D of E |D restricting to

each pi is orthogonal to T |pi = E+i , it is also a sub-bundle of K|D.
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Since T B|D is ample, to prove the Lemma, it suffices to show that the quotient

bundle (K|D)/(T B|D) is positive on D after attaching sufficiently many Ci ’s. Consider

the following diagram.

0 −−−−→ (
K|D

T B|D
)
∨

−−−−→ (
E |D

T B|D
)∨

t
−−−−→ T∨|D −−−−→ 0y y ∥∥∥

0 −−−−→ K∨|D −−−−→ E∨|D −−−−→ T∨|D −−−−→ 0y y y
0 −−−−→ (T B|D)∨ (T B|D)∨ −−−−→ 0

.

We get that the vector bundle (K|D)/(T B|D) is the elementary transform up of

(E |D)/(T B|D) along pi ’s with the direction E+i ’s. Note that the torsion quotient t
is just the restriction of (E |D)/(T B|D) at pi ’s. Thus (K|D)/(T B|D) is isomorphic to

(E |D)/(T B|D)⊗OD OD(
∑

pi ), which is positive when the attachment points on D are

sufficiently many.

Theorem 9.15. Let X be a projective homogeneous space over an algebraically closed field

k of characteristic zero. Let θ be the maximal curve class on X . There exists a very

twisting maximal scroll ζ : P1
→ M0,1(X, β).

Proof. By Proposition 9.10, it suffices to prove the case when X has Picard number

greater than two. Now we may construct the comb D∗ as in (9.11) by attaching sufficiently

many general Ci ’s. By Lemma 9.12, the comb can be smoothed. By Lemmas 9.13

and 9.14, h1(D∗, Tev|D∗(−s1− s2)) is zero. Thus by upper semi-continuity, Tev restricting

to a general smoothing of D∗ is ample.

Similarly Condition (3) of Proposition 9.9 and Lemma 9.8, the vector bundle T8|D∗ is

positive. Therefore, T8 restricting to a general smoothing of the comb D∗ is also positive

by upper semi-continuity. The theorem is proved by Lemma 9.3.

10. Rational simple connectedness of homogeneous spaces

Proposition 10.1. Let X be a projective homogeneous space defined over an algebraically

closed field of characteristic zero. Then for any simple curve class β, the evaluation

morphism

ev : M0,1(X, β)→ X

is smooth surjective with integral rationally connected geometric fibers.

Proof. The evaluation map ev is smooth because of the generic smoothness and the

homogeneity of the target X . Since X is simply connected, the finite part of the Stein

factorization of ev is étale over X , thus isomorphic to X . Therefore every geometric fiber

is connected and smooth, thus integral.

By Proposition 4.2, the moduli space M0,1(X, β) is a nonempty smooth projective

rational variety. By [15, Lemma 15.6], the geometric fibers of the evaluation morphism

are rationally connected.
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Let k be an algebraically closed field of characteristic zero. Let G be a connected

reductive linear algebraic group over k. Let T ⊂ G be a maximal torus of rank t and let

B be a Borel subgroup of G containing T . The choice of (G, B, T ) gives a root system.

Let 1 = {α1, . . . , αt } be a basis of the root system. Let W be the Weyl group of the root

system generated by simple reflections {si = sαi |αi ∈ 1}.

Let nw ∈ NG(T ) be a representative of w ∈ W . The map w 7→ nwB induces a one-to-one

correspondence between the Weyl group and the set of T -fixed points in G/B. We simply

write w for the corresponding fixed point.

Let U be the unipotent radical of B. By Bruhat decomposition [8, 14.12], G/B is a

disjoint union of U -orbits Uw and each orbit is isomorphic to the vector space kl(w),

where l is the length function on the Weyl group. Let w0 be the longest element of W .

It corresponds to the maximal dimensional Bruhat cell. Let w1, . . . , wt be the fixed points

of G/B which correspond to the codimension one Bruhat cells.

Let Gm ⊂ T correspond to the interior of the positive Weyl chamber. By [11, 3.4.7], the

Bialynicki-Birula decomposition of G/B coincides with the Bruhat decomposition. Thus

each standard line in G/B is the unique Gm-invariant line connecting w0 and wi .

Lemma 10.2. Every maximal curve in G/B is algebraically equivalent to the union of all

standard lines.

Proof. This is a corollary of Propositions 4.2 and 9.6.

Let I be a subset of 1. Let WI be the subgroup of the Weyl group generated by simple

reflections of I . The standard parabolic subgroup is of the form BW I B. Every parabolic

subgroup of G is conjugate to the standard parabolic subgroup PI containing B. Thus

every projective homogeneous space under G is of the form G/PI .

Let πI : G/B → G/PI be the natural projection. The induced Gm-action on G/PI
induces a one-to-one correspondence between the Gm-fixed points and the left coset space

W/WI . For each coset wWI , there exists a unique representative w′ with the minimal

length and l(w′w′′) = l(w′)+ l(w′′) for any w′′ ∈ WI ; cf. [26, 1.10]. By [11, 3.4.8], each

Bialynicki-Birula cell of wWI is isomorphic to kl(w′). It is easy to see that w0 = w
0wI0 ,

where wI0 is the longest element in WI and l(w0) is the dimension of G/P.

Lemma 10.3. For each standard line in G/PI , there exists a unique lifting to a standard

line in G/B.

Proof. First we show that every fixed point in G/P corresponding to a codimension one

cell uniquely lifts to a fixed point in G/B satisfying the same property. For each coset

wWI with the representative w′ discussed above, w′wI0 is the unique element in wWI
with maximal length. If a coset wW corresponds to a codimension one cell in G/P, i.e.,

l(w′) = l(w0)− 1, we have

l(w′wI0) = l(w′)+ l(wI0) = l(w0)+ l(wI0)− 1 = l(w0)− 1.

Thus the fixed point w′wI0 in G/B corresponds to a unique codimension one cell.

The standard line L connecting w0 and w′wI0 in G/B projects to a Gm-invariant curve
connecting w0W and w′W in G/P. By Lemma 9.4, the image πI (L) is a standard line
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in G/P. Since the projection morphism between the big cell of G/B and the big cell of

G/P is a Gm-equivariant linear morphism between vector spaces, the degree of πI |L is

one. Thus L maps isomorphically onto its image, which is a standard line. We get the

lifting.

Lemma 10.4. Every maximal curve in PI /B gives a simple curve of G/B.

Proof. With the Gm-action on G/B as above, by Lemma 10.2, it suffices to show that

standard lines in PI /B correspond to standard lines in G/B and the correspondence is

injective. Any standard line in PI /B is the unique Gm-invariant line connecting wI0 and

wI0si , where ti ∈ I by Lemma 9.4. After the left translation by w0, we get a Gm-invariant

line connecting w0 and w0si , which is standard in G/B by Lemma 9.4 again. Since such

correspondence is induced by a left translation, clearly it is injective.

Proposition 10.5 [15, Definition 7.1]. The moduli space Chn2(X,mθ) of two-pointed chains

of m stable maximal curves in X is represented by a nonempty smooth projective variety.

Proposition 10.6. Let X be a projective homogeneous space defined over an algebraically

closed field of characteristic zero. Then there exists m such that the geometric generic

fiber of the evaluation morphism

ev : Chn2(X,mθ)→ X × X

is smooth integral rationally connected.

Proof. By Corollary 10.5, the moduli space of two-pointed chains of m maximal curves

is a smooth projective variety. By induction on m and Proposition 4.2, it is rationally

connected. By the proof of [15, Lemma 15.8], it suffices to show that the evaluation

ev : Chn2(X,m0θ)→ X × X

is surjective for some m0. Assume that X = G/P, where G is a reductive group. We prove

this by induction on the rank of G. By Lemmas 10.2 and 10.3, it suffices to show the

case when X = G/B. When the rank of G is one, the surjectivity of ev is trivial because

G/B is isomorphic to P1.

When the rank of G is bigger than one, let 1 be the set of simple roots of G. Let Pi
be the standard parabolic subgroup corresponding to a simple root αi ∈ 1. Let P i be

the standard maximal parabolic subgroup corresponding to 1−αi . Let si be the simple

reflection of αi . Consider the following diagram,

G/B
u

−−−−→ G/P i

v

y
G/Pi

where G/P i is a projective homogeneous space of Picard number one and the morphism

v is a P1-bundle over G/Pi . By the proof of Lemma 10.4, the fiber of v is algebraically
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equivalent to the standard line L i through w0 and w0si in G/B. Since si is not in W1−{αi },

the images u(w0) and u(w0si ) are disjoint in G/P i . By Lemma 10.3, L i maps to the

unique standard line in G/P i . Thus all the fibers of v map to lines in G/P i . We call the

image lines in G/P i good lines. In fact, the above diagram gives a connected proper flat

prerelation on G/P i . By [31, IV.4.14] and by homogeneity, every pair of points in G/P i

can be connected by a chain of good lines of length m.

Now given a pair of points p and q in G/B, there exists a chain of m good lines

in G/P i connecting u(p) and u(q). We can lift the good lines to m two pointed lines

(l1, p1, q1), . . . (lm, pm, qm) in G/B such that u(p1) = u(p), u(qm) = u(q), and u(qi ) =

u(pi+1) for i = 1, . . . ,m− 1.

The fiber of u is a projective homogeneous space under an algebraic group of smaller

rank, i.e., a Levi subgroup of Pi . By induction, we can choose chains of maximal

curves in the fiber of u, connecting p and p1, q1 and p2, etc. By Lemma 10.4, we

get a chain of simple curves in X connecting p and q. By adding lines to make each

irreducible component of the chain maximal, we get a maximal chain connecting p and q
in G/B.

11. On discriminant avoidance

Let k be an algebraically closed field of arbitrary characteristic. Let S be a k-variety

of dimension d. Let K be the function field of S. Let X be a smooth projective Fano

k-variety and U be its universal torsor over X . Let r be the Picard number of X . Since k
is algebraically closed, U is a (Gm)

r -torsor over X and U exists unique up to isomorphism.

We consider the following question.

Question 11.1. Given p : X → S an isotrivial family of X over S with the vanishing of

the elementary obstruction on the generic fiber, is there a rational section?

By Proposition 2.3, the vanishing of the elementary obstruction is equivalent to the

existence of the universal torsor of XK . After shrinking the base S to an open subset, the

above question is equivalent to the following.

Question 11.2. Given (p : X → S,U) an isotrivial family of (X,U ) over k, is there a

rational section?

Let G be the automorphism group of the pair (X,U ) over k. The group scheme G has

T -valued points which are the pairs (φ, α), where φ : XT → XT is an automorphism of

schemes over T and α : φ∗U → U is an isomorphism of (Gm)
r -torsors.

The Question 11.2 gives (p : X → S,U), which is an isotrivial family of the pair

(X,U ) over S. It is natural to associate the pair with a G-torsor over S. Consider the

functor that the T -valued points over S are the set of pairs (φ, α), where φ : XT →

XT is an automorphism of schemes over T and α : φ∗U → U is an isomorphism of

HomT (R1 pT∗Gm,Gm,T )-torsors.
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Lemma 11.3. If S is reduced, the functor is representable by a scheme T over S and T
is a G-torsor over S by post-composing.

Proof. Since every G-torsor over S is affine, it suffices to prove the representability of

the functor fppf locally by the descent of affine group schemes. First we show that the

pair (p : X → S,U) is fppf locally isomorphic to the constant family.

By taking an étale neighborhood V , we may assume that the pullback of the torsor U is

a Gr
m-torsor over XV . Thus the relative character lattice is isomorphic to Zr

× V . We can

choose a basis L1, . . . , Lr of the relative character lattice such that each L i corresponds to

a very ample line bundle (Gm-torsor) over X |V . Now by the Hilbert scheme trick used in

the proof of [37, Lemma 2.2.1], after a flat base change, the pairs (X |V , L i ) are constant

families. So is the pair (X |V ,U |V ).
This implies that the functor restricted on V is just IsomV ((XV ,UV ), (XV ,UV )) and

UV is a (Gm)
r -torsor over XV . Since X is Fano, we know that Aut(X) is represented by

a linear algebraic group. Thus IsomV ((XV ,UV ), (XV ,UV )) is represented by the scheme

G× V . This proves the lemma.

Lemma 11.4. Given a G-torsor T over S, we can associate a pair (p : X → S,U) where

U is a relative universal torsor over X .

Proof. The morphism T → S is fppf. It suffices to descent the constant family (X,U )×
T to S. First we descent the isotrivial family of X . Since such family has a natural

polarization, the anticanonical polarization, it is easy to check that the polarized family

descents to S. Similarly, we can descent the relative Picard scheme and the torsor under

the relative Picard scheme to S by [7, Chapter 5, § 6]. The new torsor being universal

follows from the universality of the constant family; cf., [38, Proposition 2.2.4].

Theorem 11.5. If G = Aut(X,U ) is geometrically reductive, then Question 11.2 can be

reduced to the projective base case.

Remark 11.6. This is called discriminant avoidance, which is studied by de Jong and

Starr [37] for isotrivial families of Picard number 1. For varieties of higher Picard numbers,

it is natural to replace ample generating line bundles in their setting by universal torsors.

The latter gives a cohomological obstruction to the existence of rational points.

Proof. By the above two lemmas, we get a one-to-one correspondence between isotrivial

families (p : X → S,U) and G-torsors over S when S is reduced. The remaining part is

exactly the same as the proof of [37, Theorem 2.1.3].

The following Lemma gives a description of G = Aut(X,U ).

Lemma 11.7. If X is Fano, then G = Aut(X,U ) is an extension of Gr
m and Aut(X), where

Aut(X) is a linear algebraic group. In particular, if Aut(X) is geometrically reductive, G
is geometrically reductive.

Proof. Since X is Fano, we can choose a large multiple of the anticanonical bundle to

embed X into a projective space. Thus Aut(X) is a linear subgroup of PGL(N ). There
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is a left exact sequence of linear algebraic groups, where AutX (X,U ) is the kernel of the

forgetful map.

1 −−−−→ AutX (X,U ) −−−−→ Aut(X,U )
F

−−−−→ Aut(X)
By [9, Lemma 4.1], AutX (X,U ) is isomorphic to the group Hom(X,Gr

m). Since X is

projective, Hom(X,Gr
m)
∼= Gr

m .

It suffices to show that the forgetful map F is surjective. For any automorphism φ

of X , the pullback φ∗U is again a universal torsor. The universal torsor is unique up

to isomorphism over X when k is algebraically closed. We can choose any isomorphism

between φ∗U and U .

Corollary 11.8. The discriminant avoidance holds for isotrivial families of Fano varieties

if the automorphism group of the fiber is geometrically reductive.

12. Proof of the main theorem

Lemma 12.1. Let X be a projective homogeneous space defined over a field K . Assume

that the elementary obstruction vanishes and the Picard number of X is greater than one.

Then there exists a smooth morphism,

X
u

−−−−→ Y −−−−→ Spec K

such that Y is a projective homogeneous space of Picard number one with the vanishing

elementary obstruction. Furthermore, if Y admits a rational point p, then the fiber u−1(p)
is a smooth projective homogeneous space with the vanishing elementary obstruction.

Proof. Let 0 be the Galois group of the field K . When the elementary obstruction

of X vanishes, by [13, Proposition 2.25], Pic(X) is isomorphic to Pic(X)0. Thus by

assumption the rank of Pic(X)0 is greater than one. By Lemma 5.2, Pic(X) is a

permutation 0-module with a canonical 0-invariant basis L1, . . . ,Lr . We can choose

a 0-orbit in the basis, denoted by L1, . . . ,Lb. Since L = L1+ · · ·+Lb is 0-invariant,

the line bundle L is globally generated and defined over K . The linear system |L| gives

the morphism u : X → Y . It is clear from the construction that u is smooth and Y is a

projective homogeneous space and of Picard number one. The vanishing of the elementary

obstruction of Y follows from [41, Lemma 3.1.2].

Let X be the base change of X to the algebraic closure. A universal torsor on X is
isomorphic to a Gr

m-torsor L1× · · ·Lr which is unique up to isomorphism. The vanishing

of the elementary obstruction is equivalent to that the universal torsor on X descents

to X ; cf., [38, Proposition 2.2.4]. Let T be the universal torsor on X and Tp be the

restriction of T on Z = u−1(p). By functoriality of the restriction, Tp ×K K is the same

as T ×K K |Z . The latter term is just L1× · · ·Lr |Z . It is easy to see that the restriction

gives a product of a trivial Gb
m-torsor and the universal torsor on Z . Therefore, the

elementary obstruction of Z vanishes.

Lemma 12.2. Let X be a projective homogeneous space G/P over an algebraically closed

field of characteristic zero. Then the connected component of the automorphism group

Aut(X) is reductive.
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Proof. Since X is Fano, the automorphism group is a linear algebraic group. Let R be the

solvable radical of the connected component of Aut(X). The solvable group R naturally

acts on X . By the Borel fixed point theorem [8, III.10.4], there exists a fixed point x of

R. Let Lg be the automorphism of the left translation on X by an element of g ∈ G,

which clearly lies in the connected component of Aut(X). For any closed point y in X ,

there exists g ∈ G such that Lg(y) = x . For every element ϕ in R, since R is normal,

Lg ◦ϕ ◦ Lg−1 lies in R. Thus we have

Lg(ϕ(y)) = (Lg ◦ϕ ◦ Lg−1)(Lg(y)) = (Lg ◦ϕ ◦ Lg−1)(x) = x = Lg(y).

Thus ϕ fixes y, i.e., ϕ fixes every point in X . This implies that the solvable radical R is

trivial.

Proof of Theorem 1.4. By Proposition 2.3, we only need to prove the ‘if’ case. By [15,

Lemma 16.3], it suffices to prove the theorem in characteristic zero. By Lemma 12.1 and

induction on the Picard number, it suffices to prove the case when the Picard number of

X is one. Let π : X → U be an integral model of X , where U is a dense open subset of

S. After shrinking U , we may assume that π is smooth and the relative universal torsor

exists. By the method of discriminant avoidance, cf., Lemma 12.2 and Corollary 11.8, we

may assume that U = S is projective.

After blowing up the base points of a Lefschetz pencil of S, we have the right column

of the following diagram. When taking the base change to the generic point of P1, we

have the left column of the following Cartesian diagram.

X −−−−→ X

π

y y
C −−−−→ Sy y

k(P1) −−−−→ P1

Let K be the field k(P1). Now we are in Situation 5.1. By Propositions 10.1 and 10.6,

Hypotheses 5.9 and 5.10 hold. By Theorem 9.15, Hypothesis 5.11 holds. By Theorem 5.12,

there exists an Abel sequence (Ze)e>e0 for X/C/K .

Therefore, the Abel map α : Ze → Pice
D/K is surjective with integral rationally

connected geometric generic fiber for e � 0. Since the exceptional curves on S give the

constant sections of S→ P1, there exist rational points on Pice
C/K for every integer e > 0.

By pullback to D, there exist rational points on Picre
D/K for every e > 0, where r is the

geometric Picard number of X . When e � 0 and divisible by r , the fiber of the Abel map

over a rational point of PicD/K is integral rationally connected defined over K . By [19],

there exists a K -rational point on the coarse moduli space of Ze. By [15, Lemma 13.3],

we get a rational point.

Lemma 12.3 (Starr). Let K be a field. Let G be a quasisplit adjoint semisimple group

defined over K . If a G-torsor admits a reduction to a Borel subgroup, then it is trivial.
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Proof. Let Won(G) be the wonderful compactification of G. For any G-torsor T , we can

twist Won(G) by T using the right T -action to get a wonderful compactification Won(T )
of T . The unique closed G×GT -orbit (where GT = IsomG(T , T ) is the T -twisted inner

form of G) is then G/B× T /B, where T /B parameterizes reductions of structure groups

of T to a Borel. Since T has a reduction of structure to a Borel, then T /B has a K -point.

Thus the closed subscheme G/B× T/B has a K -point s0. Now, using Hensel’s lemma,

take a formal deformation of this K -point of Won(T ) to a K [[x]]-point s whose generic

fiber sη is in the interior T of Won(T ). Since the pullback of T to Spec K ((x)) has the

rational point sη, the pullback torsor is trivial. Thus, by Serre–Grothendieck conjecture

over DVR [35], the pullback of T is trivial over Spec K [[x]]. By restricting to the closed

point Spec K , the original torsor T is trivial.

Proof of Corollary 1.5. Since G is quasisplit, there exists a Borel subgroup B defined

over k(S). For any G-torsor E , we define the twisted full flag k(S)-varieties E/B. The

elementary obstruction of E/B vanishes by [20, Lemma 6.4] and [4, Lemma 2.2 (vi)].

Thus Theorem 1.4 implies that the torsor E admits a reduction to B.

Let Z be the center of G. Let G ′ = G/Z be the adjoint form of G. For any G-torsor

T , by the first paragraph, the induced G ′-torsor T ′ admits a reduction to B ′ = B/Z . By

Lemma 12.3, T ′ is a trivial G ′-torsor. Thus by long exact sequence of Galois cohomology,

the torsor T admits a reduction to the center Z .
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P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P.
Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre.

https://doi.org/10.1017/S1474748017000081 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748017000081


326 Y. Zhu

7. S. Bosch, W. Lütkebohmert and M. Raynaud, Néron models, Ergebnisse der
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22. A. Grothendieck, Revêtements étales et groupe fondamental, Lecture Notes in
Mathematics, Volume 224 (Springer, Berlin, 1971). Séminaire de Géométrie Algébrique du
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28. J. Kollár and S. J. Kovács, Log canonical singularities are Du Bois, J. Amer. Math.
Soc. 23(3) (2010), 791–813.

29. F. F. Knudsen and D. Mumford, The projectivity of the moduli space of stable curves.
I. Preliminaries on ‘det’ and ‘Div’, Math. Scand. 39(1) (1976), 19–55.

30. J. Kollár, Higher direct images of dualizing sheaves. I, Ann. of Math. (2) 123(1) (1986),
11–42.

31. J. Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und
ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in
Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics],
Volume 32 (Springer, Berlin, 1996).

32. J. Kollár, Rationally connected varieties and fundamental groups, in Higher dimensional
varieties and rational points (Budapest, 2001), Bolyai Soc. Math. Stud., Volume 12, pp.
69–92 (Springer, Berlin, 2003).

33. B. Kim and R. Pandharipande, The connectedness of the moduli space of maps to
homogeneous spaces, in Symplectic geometry and mirror symmetry (Seoul, 2000), pp.
187–201 (World Sci. Publ., River Edge, NJ, 2001).

34. S. Lang, On quasi algebraic closure, Ann. of Math. (2) 55 (1952), 373–390.
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