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A1-curves on log smooth varieties
By Qile Chen at Chestnut Hill and Yi Zhu at Salt Lake City

Abstract. In this paper, we study A1-connected varieties from log geometry point of
view, and prove a criterion for A1-connectedness. As applications, we provide many interesting
examples of A1-connected varieties in the case of complements of ample divisors, and the
case of homogeneous spaces. We also obtain a logarithmic version of Hartshorne conjecture
characterizing projective spaces and affine spaces.

1. Introduction

Throughout this paper, we work over an algebraically closed field k of characteristic
char k � 0.

1.1. A
1-curves. Rational curves on projective varieties have been intensively studied in

algebraic geometry. For varieties admitting lots of rational curves, rational connectedness plays
a central role in the study of birational geometry of higher-dimensional varieties [10, 36, 44].
Varieties that are (separably) rationally connected admit nice arithmetic properties [21, 22, 24,
35, 37].

One would like to study the analogue of rational curves and rational connectedness on
open varieties. Keel and McKernan [30] suggest that the right notion of “rational curve” on
a non-proper variety should include both rational curves and A1-curves. Campana [11, 12]
further introduced the notion of orbifold rational curves which include A1-curves as an impor-
tant case.

Definition 1.1. An A1-curve on a scheme U is a non-constant, proper morphism

f W A1 ! U :

A family of A1-curves over a scheme T is a morphism f W A1 � T ! U such that for each
geometry point t 2 T , f

t
is an A1-curve.

Note that A1-curves behave in many ways similar to the case of rational curves. They
play an essential role in the classification theory of open algebraic surfaces [29, 30, 42, 43, 55].
In [16], A1-curves are used to produce rational curves on projective varieties via degenerations.
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Despite their importance, A1-curves are much more difficult to construct than rational
curves. Some methods of producing A1-curves have been studied in [16, 30, 38, 41, 50]. How-
ever, the log Bend-and-Break conjecture [30, Conjecture 1.11] remains largely open.

1.2. Main result and new examples of A
1-connected varieties. Similar to uniruled-

ness and rational connectedness [34, IV.(1.1.1), (3.2.2), (3.2.3)], we define:

Definition 1.2. Let U be an algebraic variety.

(1) U is A1-uniruled (resp. separably A1-uniruled) if there exists a variety T and a T -family
of A1-curves f W T � A1 ! U with f dominant (resp. dominant and separable).

(2) U is A1-connected (resp. separably A1-connected) if there exists a variety T and
a T -family of A1-curves f W T � A1 ! U such that

.f /.2/ WD f �T f W T � A1 � A1 ! U � U

is dominant (resp. dominant and separable).

Note that A1-connected varieties are analogue of rationally connected varieties in the
non-proper setting. They share many similar geometric properties. Furthermore, A1-connected-
ness has applications in studying integral points over function fields of complex curves [17,18].

In this paper, we provide a new criterion of A1-connectedness:

Theorem 1.3. Let X be a log smooth log variety with a proper, separably rationally

connected, and fully free center Y . If Xı � X denoted the locus where the log structure is

trivial, then Xı is separably A1-connected.

Remark 1.4. We explain the terminologies in the simple normal crossings case. Let X
be a smooth compactification of Xı with simple normal crossings boundary D D

S

i Di , and
X be the log smooth variety associated to the pair .X;D/, see Example 2.1. A center Y is
a deepest stratum of the boundary divisor D. It is fully free if there exist free rational curves
R1; : : : ; Rm on Y such that:

(1) aij WD Di �Rj � 0 for each i; j ,

(2) The matrix of integers .aij / over k is of rank r where r is the number ofDi containing Y .

We refer to Definition 3.9 for fully free centers in the general setting.

Theorem 1.3 is proved in Section 4.5. It provides many interesting examples of A1-con-
nected varieties. Combining Theorem 1.3 and Proposition 3.12, we prove A1-connectedness
for complements of ample divisors.

Theorem 1.5. Suppose that char k D 0. Let D D D1 C � � � CDr be a simple normal

crossings divisor on a smooth projective variety X . Assume that

(1) Di is smooth and ample for every i ,

(2) D1; : : : ;Dr are linearly independent in N 1
Q
.X/,

(3) the center
Tr
iD1Di is rationally connected of dimension � 2.

Then X XD is A1-connected.
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Remark 1.6. By [26, Lemma 2] and Corollary 2.8, condition (2) in Theorem 1.5 is
a necessary condition for A1-connectedness.

Projective homogeneous spaces equipped with an action of a reductive group G are
rationally connected. Their generalization in the quasi-projective setting are sober spherical
homogeneous spaces of the formG=H , studied by Luna–Vust [40], Knop [31] and Brion [6,8].
They admit canonical toroidal compactifications, called wonderful compactifications.

Theorem 1.7. Suppose that char k D 0. Let G=H be a non-proper sober spherical

homogeneous space under a reductive group G. Suppose that all colors of G=H are of type

(b). Then G=H is A1-connected.

This is proved at the end of Section 5.5. See Theorem 5.25 for a more detailed version.
Type (b) condition, introduced by Luna [39, Section 1.4] (see also Definition 5.21), is

satisfied by a large class of examples, including all semisimple algebraic groups. This condition
implies that the center of the wonderful compactification is fully free. In arbitrary characteristic,
we obtain similar result for semisimple groups.

Theorem 1.8 (see Theorem 5.27). A semisimple algebraic group G is separably

A1-connected if char k − j�1.G/j. In particular, simply connected semisimple algebraic groups

are separably A1-connected.

Indeed, Theorem 5.25 and Theorem 5.27 give a complete classification of A1-curve
classes on such homogeneous spaces, which further implies that “interior effective” curve
classes are represented by log rational curves:

Theorem 1.9. Let Xı be either G=H as in Theorem 1.7 in char k D 0, or a semisimple

algebraic group in char k � 0. Denote by X the wonderful compactification of Xı. Let F � X

be the closure of a possibly open curve on Xı, which intersects the boundary non-trivially

(resp. trivially). Then the curve class ŒF � inN1.X/ is represented by the closure of an A1-curve

(resp. P1-curve) on Xı.

1.3. Log Hartshorne conjecture. Combining Mori’s idea with the theory of A1-curves
and Keel–McKernan’s work [30], we identify projective spaces as distinguished compactifica-
tions of affine spaces as follows:

Theorem 1.10 (see Theorem 6.5). LetX D .X;D/ be a log smooth projective log vari-

ety. If the log tangent bundle is ample, then .X;D/ is isomorphic to either the pair .Pn;;/

or .Pn; a hyperplane/.

The proof of Theorem 6.5 will be given in Section 6. When the underlying space X is
smooth, a simple proof of Theorem 1.10 using the result [14, Theorem 1.1] can be given.

1.4. The logarithmic method. The key to the proof of Theorem 1.3 is to embrace
the log geometry. Our method, which is a continuation of our previous work [16], may be as
interesting as the theorem itself.
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Let Xı be a smooth variety. Suppose that X is a proper, log smooth variety. Let Xı � X

be the locus where the log structure is trivial. Denote by P11 the log scheme associated to the
pair .P1;1/, where 1 2 P1 is a marking. Note that an A1-curve on Xı determines a unique
A1-curve on X as below:

Definition 1.11. A log rational curve on X is a non-constant morphism of log schemes
f W P11 ! X . It is called an A1-curve if f .1/ … Xı. Otherwise, it is called a P1-curve.

Definition 1.12. A log rational curve f W P11 ! X is free (resp. very free) if f �TX is
semi-positive (resp. ample), where TX is the log tangent bundle of X .

Using log deformation theory, we observe that

Proposition 1.13 (see Proposition 2.5, 2.6, and 2.7). The following statements hold.

(1) Xı is separably A1-uniruled if and only if X has a free A1-curve.

(2) Xı is separably A1-connected if and only if X has a very free A1-curve.

To prove Theorem 1.3, we use stable log maps of [1, 15, 23]. We construct a degenerate
stable log map with the underlying stable map lying in the center. By analyzing the log defor-
mation theory, we show that such stable log map can be deformed to a very free A1-curve, see
Sections 3 and 4.

1.5. Notation. Throughout this paper, all log structures are assumed to be fine and satu-
rated [28, Section 2]. Some useful notions of logarithmic geometry will be reviewed in Section
2. We refer to [28] for the basics of logarithmic geometry. Capital letters such as X; Y are
reserved for log schemes with underlying schemes denoted by X and Y , respectively.

Acknowledgement. We are grateful to Professor Dan Abramovich, Steffen Marcus,
and Jonathan Wise for useful discussions on log étale resolution. In the collaboration with
them on [3], we learned the idea of log étale descent, which greatly inspires our construc-
tion in the current paper. During the preparation of this paper, we received a lot of help from
Johan de Jong, Yi Hu, Mathieu Huruguen, János Kollár, Jason Starr, Michael Thaddeus, and
Xinwen Zhu. We would like to express our thanks to them. A large part of our work has been
done during the first named author’s visit of the Math Department at the University of Utah in
February 2014. We would like to thank the Utah Math Department for its hospitality.

2. Basic definitions

2.1. Log geometry. Our construction of very free A1-curves uses stable log maps
[1, 15, 23] that are built upon log geometry of Kato–Fontaine–Illusie [28]. We briefly recall
here some notions in log geometry and stable log maps. Readers who are familiar with stable
log maps may skip Sections 2.1 and 2.2.

A log structure on a schemeX is a sheaf of monoids M in étale topology with a morphism
of sheaves of monoids ˛ W M ! OX such that ˛ induces an isomorphism ˛�1.O�

X / ! O
�
X .

Here OX is viewed as a sheaf of monoids under multiplication. For simplicity, we will omit ˛
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and refer to M as the log structure when there is no danger of confusing. The quotient

M WD M=O�
X

is called the characteristic sheaf of M. The pair X D .X;M/ is called a log scheme. The
following example is important to our construction.

Example 2.1. Let D � X be a divisor satisfying

(1) Xı WD X XD is smooth,

(2) for any point t 2 D, there exists an étale neighborhood U ! X of t , and a smooth mor-
phism U ! T with T an affine toric variety with the toric boundary � such that DjU is
given by the pullback of �.

We call such .X;D/ a toroidal pair, and associate the following divisorial log structure:

M.V / WD ¹f 2 OV W f jVXD 2 O
�º

˛
,! OX

for any étale morphism V ! X . We callX D .X;M/ the log scheme associated to the toroidal
pair .X;D/.

A morphism of log schemes f W Y D .Y ;MY / ! X D .X;MX / is given by a pair
.f ; f [/ consisting of a morphism of the underlying schemes f W Y ! X and a morphism
of log structures f [ W f �

MX ! MY , where f �
MX is the pullback of MX [28, Sections 1.1

and 1.4].
Log smoothness can be defined using the infinitesimal lifting property [28, (3.3)]. A mor-

phism is log smooth if and only if it is locally toroidal in the sense of [28, (3.5)]. In particular,
the log scheme X in Example 2.1 is log smooth over k.

2.2. Stable log maps. A genus g, n-marked log curve over a log scheme S is a pair
.� W C ! S; ¹�iºi /, where .� W C ! S; ¹�iºi / is a genus g, n-marked usual pre-stable curves
over S with markings ¹�iº, and � is a log smooth, integral morphism with local structures
described in [27, 48], see also [15, Sections B.1.1 and B.1.2].

We fix a log smooth scheme X as the target. A log map over S is a morphism of log
schemes f W C ! X such that � W C ! S is a log curve over S . A log map f is called stable

if the underlying morphism f W C ! X is stable in the usual sense.
Let S be a geometric point. We call a stable log map f over S non-degenerate if the

log structure MS is trivial. Geometrically, this means that f has a smooth underlying source
curve, and its underlying image does not completely lie on the locus of X with the non-trivial
log structure.

Consider a stable log map f W C ! X over S . Along a marking � W S ! C , we have an
induced morphism of characteristic sheaves

(2.2.1) c� W .f ı �/�MX

Nf [

�! ��
MC D MS ˚ N �! N;

where the second arrow is the projection to N. Such a morphism c� is called the contact order

along the marking � . The contact order along a marking is a deformation invariance of stable
log maps. Indeed, they canonically corresponds to the connected components of the evaluation
stacks of stable log maps, see [2] and [3, Section 5.2].
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Denote by � D .g; n; ¹ciº; ˇ/ the collection of numerical data, where g is the genus,
n is the number of markings, ci is the contact order at the i -th marking, and ˇ is the curve
class. It was proved in [1, 15, 23, 54] that the stack of stable log maps with numerical data � is
represented by an algebraic stack carrying a minimal log structure. We may thus study stable
log maps using their deformation theory.

Consider a stable log map f W C ! X over S . By [47, Section 5.9] the deformation and
obstruction theory of f are controlled by H 0.f �TX / and H 1.f �TX /, respectively. Here the
log tangent bundle TX D �_

X is defined as the dual of the log cotangent bundle of X (see
for instance [28, Sections 1.7 and 3.10]). In particular, suppose that S is a geometric point.
If H 1.f �TX / D 0, then f can be deformed to a non-degenerate stable log map. We refer to
[15, Section 2.5] for more details of the deformation of log maps.

2.3. Log rational curves. Recall that P11 is the log scheme associated to the pair
.P1; ¹1º/. Let X be a log scheme, and let Xı � X be the locus where the log structure is
trivial. By the following lemma, an A1-curve on a log variety X is the same as an A1-curve
on Xı.

Lemma 2.2. Assume that X is proper. Then for any morphism f ı W A1 ! Xı, there is

a unique stable log map f W P11 ! X such that the following diagram is commutative:

A1
f ı

//

��

Xı

��

P11
f

// X ,

where the vertical arrows are the corresponding embeddings. Furthermore, there are precisely

two possibilities:

(1) If the contact order of f at 1 is non-trivial, then f ı is an A1-curve.

(2) If the contact order of f at 1 is trivial, then the underlying morphism f W P1 ! X of

f factors through Xı.

Proof. Since the underlying scheme X is proper, the underlying morphism f of f is
uniquely determined by f ı. To determine f , it remains to construct a morphism of sheaf of
monoids f [ W f �

MX ! MP1
1

that fits in the following commutative diagram:

f �
MX

f [

//

˛1
##

MP1
1

˛2
||

OP1 ,

where the two arrows ˛1 and ˛2 are the structure arrows of the corresponding log struc-
tures. Since the image of f jA1 D f ı lands in the locus Xı with the trivial log structure,
the image of ˛1 consists of functions that are invertible away from 1. This implies that
˛1.f

�
MX / � MP1

1

� OP1 , hence the unique morphism f [.
If the contact order of f at 1 is non-trivial, f �

MX is non-trivial along 1. This implies
that f .1/ 2 X XXı. Hence f ı is an A1-curve.
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Otherwise, the contact order of f at 1 is trivial, and the morphism f [ factors
through O

�
P1 . Hence the log structure f �

MX is the trivial one, and f factors through Xı.

Similar to Definition 1.2, we have the logarithmic version:

Definition 2.3. Let X be a proper, log smooth variety of dimension n.

� X is called log uniruled (resp. separably log uniruled) if there are a scheme T of dimen-
sion n � 1 and a log morphism

f W P11 � T ! X

which is dominant (resp. dominant and separable); X is called A1-uniruled (resp. sepa-

rably A1-uniruled) if furthermore f is a family of A1-curves.

� X is called log rationally connected (resp. separably log rationally connected) if there
are a scheme T and a log morphism f W P11 � T ! X such that the morphism

(2.3.1) f .2/ W P11 � P11 � T ! X �X; .t1; t2; y/ 7! .f .t1; y/; f .t2; y//

is dominant (resp. dominant and separable); X is called A1-connected (resp. separably
A1-connected) if we further require f to be a family of A1-curves.

Remark 2.4. The definition of log uniruledness and log rationally connectedness are
compatible with Campana’s orbifold uniruledness and rational connectedness for boundary
with infinite weight [13, Definition 9.4].

We observe that the A1-uniruledness and A1-connectedness are intrinsic to the open
locus of the log variety where the log structure is trivial.

Proposition 2.5. Let X be a proper log smooth variety. Denote by Xı � X the locus

where the log structure is trivial. The following are equivalent:

(1) X is A1-uniruled (resp. separably A1-uniruled).

(2) Xı is A1-uniruled (resp. separably A1-uniruled).

Proposition 2.6. Notation as in Proposition 2.5, the following are equivalent:

(1) X is A1-connected (resp. separably A1-connected).

(2) Xı is A1-connected (resp. separably A1-connected).

We will provide a proof of Proposition 2.6. The proof of Proposition 2.5 is similar, and
is left to the reader.

Proof of Proposition 2.6. Since contact orders are deformation invariant, over a con-
nected family of stable log maps, the contact order along a fixed marking can be either trivial
over the whole family, or non-trivial over the whole family. The direction “(1) ) (2)” follows
directly from Definition 2.3 by removing the marking 1.

Conversely, replacing T by its normalization, we may assume that T is normal. The
morphism f ı induces a rational map

P1 � T Ü X:
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Replacing T by an open dense subscheme which is again denoted by T , we may assume that
the above rational map is a morphism:

f W P1 � T ! X:

Furthermore, since f ı
t is proper for any t 2 T , the image of the marking 1 � T via f is

contained in X XXı. A similar argument as for Lemma 2.2 implies that f can be lifted to
a unique log morphism f W P11 � T ! X . This provides the family (2.3.1) as needed in Defi-
nition 2.3.

Proposition 2.7. Let X be a proper log smooth variety. Then we have:

(1) X is separably log uniruled if and only if there exists a free log rational curve on X ,

(2) X is separably log rationally connected if and only if there exists a very free log rational

curve on X .

Proof. The proof of this proposition is similar to the case of rational curves [34, Chap-
ter IV, Sections 1.9 and 3.7]. For completeness, we sketch the proof of (2). The proof of (1) is
similar, and is omitted here.

Denote by A WD A2.X/ the log stack of genus zero stable log maps with a unique mark-
ing 1. Let A

ı � A be the open substack with the trivial log structure. Denote by F W C ! X;

the universal stable log map over A
ı. For a log rational curve Œf � 2 A

ı, let T ! A
ı be

a smooth morphism with image containing Œf � such that the pullback of F over T is given
by

F W P11 � T ! X:

Assume that Œf � 2 T . Consider the induced morphism

F .2/ W P11 � P11 � T ! X:

Consider two geometric points p; q 2 A1 D P11 X ¹1º. We calculate that the log differential
dF .2/ at .p; q; Œf �/ is of the form

dF .2/.p; q; Œf �/ W .df .p/C �.p; f /; df .q/C �.q; f //;

where df .s/ is the log differential of f at s and �.s; f / is the natural evaluation

�.s; f / W H 0.P1; f �TX ˝ OP1.�s// ! f �TX ˝ k.s/:

Following the same argument of [34, Section II.3.5], we observe that dF .2/.p; q; Œf �/ is
surjective if and only if the following is also surjective:

�.p; q; f / D .�.p; f /; �.q; f // W H 0.P1; f �TX/ ! f �TX ˝ k.p/˚ f �TX ˝ k.q/:

Indeed, since the log tangent bundle of TP1
1

is the line bundle OP1.1/, the image of the mor-
phism .df .p/; df .q// is contained in the image of �.p; q; f /. This implies that dF2 is surjec-
tive if and only if �.p; q; f / is surjective. Observe that the latter condition is equivalent to that
f �TX is positive.

Since separable log rational connectedness is equivalent to F .2/ is dominant and generic
smooth, it is equivalent to the existence of a very free log rational curve as well.

The following observation is a generalization of [34, Chapter IV, Sections 1.11 and 3.8].
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Corollary 2.8. Let X be a proper log smooth variety.

(1) If X is separably log uniruled, then H 0.X;KmX / D 0 for every m > 0.

(2) If X is separably log rationally connected, then H 0.X; .�1X /
˝m/ D 0 for every m > 0.

Proof. Here we only verify (2). The proof of (1) is similar and is left to the reader. By
Proposition 2.7, there exists a log rational curve f W P11 ! X such that f �TX is positive.
Thus f ��1X is the sum of line bundles of negative degree. Therefore, any section of .�1X /

˝m

vanishes along f .P1/. Such very free log rational curves cover a dense open subset of X .

3. Curves in the center

3.1. Centers of Deligne–Faltings type. LetX be a log scheme. Throughout this paper,
we will always assume that X to be quasi-compact. By [46, Lemma 3.5] there is a canonical
stratification ¹X�º�2ƒ associated to X such that

(1) X� ! X is a connected locally closed subscheme with the pullback log structure,

(2) the sheaf of groups M
gp
X�

is a locally constant sheaf,

(3) X D
S

�X� is a disjoint union.

Denote by X� the closure of X� in X ; X� is called a center of X if X� D X�.
For later use, we reserve the letter Y for a connected center of X , and view Y as a log

scheme with the log structure pulled back from X . We observe that when X is log smooth, Y
also has smooth underlying structure, see [46, Lemma 3.5 (ii)].

Definition 3.1. A center Y of a log scheme X is called of Deligne–Faltings type if
there are a fine, saturated, sharp monoid P , and a global morphism of sheaves of monoids
PX ! MY WD MY =O

�
Y which étale locally lifts to a chart of MY . Here we view PX as the

global constant sheaf of monoids with coefficients in the P . For simplicity, we may identify P
with PX if there is no danger of confusion.

Lemma 3.2. Let Y be a center of some log scheme X . Then the following statements

are equivalent:

(1) The sheaf of monoids MY is globally constant.

(2) The natural morphism ˇ W �.Y ;MY / ! MY is a chart.

(3) Y is of Deligne–Faltings type.

The chart ˇ in (2) is called the distinguished chart of MY .

Proof. The equivalence between (1) and (2) is obvious. Clearly, (2) implies (3). It
remains to show that (3) implies (1). Consider the following diagram:

�.Y ;MY / //

��

MY

��

�.Y ;MY /
gp // M

gp
Y .
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Since the vertical arrows are inclusions of sheaves of monoids, it suffices to show that M
gp
Y is

globally constant. Note that M
gp
Y is locally constant on Y . For any point y 2 Y , consider the

specialization morphism
�y W �.Y ;MY /

gp ! M
gp
Y;y :

Since Y is of Deligne–Faltings type, one observe that �y is surjective for any y. Consider an
element ı 2 ker�y . Then we have ı D a � b for some elements a; b 2 �.Y ;MY /. Thus, we
have �y.a/ D �y.b/ in M

gp
Y;y . Since M

gp
Y is locally constant on Y , this implies that a D b as

a section in MY in a neighborhood of y in Y . Since Y is connected by the definition of center,
a D b over Y . This implies that ı D 0 and �y is an isomorphism for any y 2 Y . Thus, the
sheaf M

gp
Y is globally constant.

The following observation follows by considering a toroidal modification:

Lemma 3.3. Let Y be a center of a log smooth varietyX . Let � W X 0 ! X be a proper,

birational, log étale morphism, and let Y 0 � X 0 be a center over Y . Then:

(1) . N�[/gpjY W ��
M

gp
Y ! M

gp
Y 0 is an isomorphism of sheaves of groups.

(2) The underlying schemes Y and Y 0 are smooth in the usual sense.

(3) The underlying morphism �jY 0 W Y 0 ! Y is finite and étale.

Proof. Since the statements are local around Y , by the log smoothness of X , we may
assume that X D SpecRŒP � for some ring R, and a fine, saturated, and sharp monoid P , with
the log structure MX given by the log structure associated to the pre-log structure P ! RŒP �,
see [28, (1.3)]. Then the birational log étale morphism � 0 W X 0 ! X is given by toroidal modifi-
cations of the underlying toric varieties. Denote by U � X 0 the open log subscheme containing
the center Y 0 over Y . We may assume that U D SpecRŒP 0� with the log structure MU given
by the log structure associated to the pre-log structure P 0 ! RŒP 0�. The morphism U ! X is
induced by the morphism P 0 ! P on the level of monoids.

Notice that MY 0 D P 0 and MY D P are both globally constant sheaves of monoids
with the morphism . N�[/gpjY W ��

M
gp
Y ! M

gp
Y 0 given by the morphism P ! P 0 induced by

the toroidal modifications. This proves (1).
The log smoothness ofX implies that SpecR is smooth in the usual sense, see [28, Theo-

rem (3.5)]. Furthermore, in the local case the projection Y 0 D SpecR ! Y D SpecR is just
the identity. This proves (2) and (3).

In this paper, we are particularly interested in the following situation.

Lemma 3.4. Let X be a log smooth variety, and let Y � X be a center of X . Assume

that Y is proper and separably rationally connected. Then MY is a globally constant sheaf of

monoids over Y . In particular, the center Y is of Deligne–Faltings type.

Proof. Let X 0 ! X be a birational log étale morphism such that X 0 has simple normal
crossings boundary. Such a resolution exists over algebraically closed fields of arbitrary char-
acteristic, see [45, Theorem 5.10] or [3, Corollary 4.5.4]. Let Y 0 � X 0 be a center over Y . Since
X 0 has simple normal crossings boundary, the sheaf of free monoids MY 0 Š Nk is a globally
constant sheaf of monoids for some positive integer k.
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By [20, Corollary 3.6], the separably rationally connectedness of Y 0 implies the under-
lying morphism Y 0 ! Y is an isomorphism. Since MY 0 is a constant sheaf of monoids, by
Lemma 3.3, the sheaf of groups M

gp
Y is a constant sheaf of monoids. Then the canonical inclu-

sion MY � M
gp
Y implies that MY is globally constant sheaf of monoids.

3.2. Admissible curve classes in Deligne–Faltings centers.

Proposition 3.5. Let X be a log scheme, and let  W P ! MX be a morphism from

a globally constant sheaf of monoids P . Then there exists a natural map of monoids

(3.2.1) L W P ! Pic.X/

given by ı ! .q�1..ı//_, where q W MX ! MX is the quotient morphism.

Proof. Note that .q�1..ı//, hence its dual is an O
�
X -torsor, which corresponds to

a unique element in Pic.X/.

Definition 3.6. Let Y be a Deligne–Faltings center, and let ˇ W P WD �.Y ;MY /! MY

be the distinguished chart. The total contact order of a curve class F 2 N1.Y / is the element
c.F / 2 .P gp/_ defined by

(3.2.2) c.F /.ı/ D c1.Lˇ .ı// � F for any ı 2 P gp;

where c1.Lˇ .ı// is the first Chern class ofLˇ . A curve class F is log admissible if c.F / 2 P_.

Example 3.7. We give an example of total contact orders in the case of simple normal
crossings boundaries. Let X be a smooth variety, and let D D

Sn
iD1Di � X be a simple

normal crossings divisor, where Di is the irreducible component of D for each i . Denote by
X D .X;MX / the log scheme associated to the pair .X;D/, see Example 2.1. Assume that X
has a unique center Y with Y D

Tn
iD1Di . By [28, Complement 1] and [15, Section A.2], the

characteristic sheaf MX admits a morphism ˇX W P D Nn ! MX such that ˇX locally lifts to
a chart of MX . We give a local description of ˇX as follows. Let ı1; : : : ; ın be a basis of P .
For each point x 2 X , let si D 0 be the local equation ofDi around x for each i . Then we may
view si as a local section of MX . Denote by Nsi the image of si in MX . Then locally around x,
the morphism ˇX is given by

ˇX .ıi / D Nsi for each i:

In this case, the induced morphism ˇY WD .ˇX /jY W P ! MY is the distinguished chart. Fur-
ther, notice that LˇY

.ıi / D OX .Di /jY . Thus an effective curve F in Y is log admissible if and
only if c.F /.ıi / D ŒF � � ŒDi � � 0 for all i .

Lemma 3.8. Suppose that Y is a Deligne–Faltings center of a log smooth variety X .

Let � W X 0 ! X be any proper, birational, log étale morphism, and let Y 0 � X 0 be a center

over Y . Then Y 0 is also of Deligne–Faltings type with Y 0 D Y . Consider the distinguished

charts

ˇ W P WD �.Y ;MY / ! MY and ˇ0 W Q WD �.Y 0;MY 0/ ! MY 0 :

For any effective curve C � Y , we have cY .ŒC �/ D cY 0.ŒC �/ in .Qgp/_ D .P gp/_, where cY

and cY 0 are the total contact orders associated to Y and Y 0, respectively, see (3.2.2).
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Proof. Consider the following commutative diagram over Y 0:

��
MY

//

��

MY 0

��

��
MY

// MY 0

P

Š

OO

// Q.

Š

OO

We want to determine c1.Lˇ .ı// � ŒC � for each ı 2 Q. By Lemma 3.3 (1), the bottom arrow
induces an isomorphism P gp Š Qgp. The statement then follows.

The following definition is crucial in our construction of A1-curves.

Definition 3.9. A Deligne–Faltings-type center Y � X is called fully free (resp. primi-

tively free) if there exist free rational curvesR1; : : : ; Rl on Y such that their total contact orders
lie in P_, and span the k-vector space .P gp/_ ˝Z k (resp. the lattice .P gp/_).

Remark 3.10. Considering the k-vector space spanned by the total contact orders will
be crucial in the construction of very free A1-curves for base fields of arbitrary characteristic,
see Lemma 4.14.

3.3. Examples of simple normal crossings boundaries. We next provide some inter-
esting examples of fully free centers.

Lemma 3.11. LetZ be a proper, smooth, separably rationally connected variety. There

exist very free rational curvesR0; : : : ; Rl onZ whose curve classes span the Z-latticeN1.Z/.

Proof. By [51, Theorem 1.3], CH1.Z/ is generated by rational curves. In particular,
there exists rational curves R0

1; : : : ; R
0
l

on Z whose curve classes span N1.Z/. Now we pick
a very free curve R0, expressed as a linear combination in N1.Z/:

ŒR1� D a1ŒR
0
1�C � � � C al ŒR

0
l �:

For any i D 1; : : : ; l , let Ni be a positive integer such that the class Ni ŒR1�C ŒR0
i � can

be represented by a very free rational curve Ri . The existence of such very free rational curves
follows from [34, Theorem II.7.9, Proposition II.7.10]. Now rational curves R0; : : : ; Rl are
very free, whose curve classes span N1.Z/.

Proposition 3.12. Suppose that char k D 0. Let X be a smooth projective variety, and

let D D D1 C � � � CDr be a simple normal crossings divisor on X . Let X be the log smooth

variety associated to the pair .X;D/. Assume that

(1) Di is irreducible and ample for all i ,

(2) the numerical equivalence classes ofD1; : : : ;Dr are linearly independent in the Néron–

Severi group N 1.X/Q,

(3) the center Y WD
Tr
iD1Di is rationally connected of dimension � 2.

Then Y is a fully free center.
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Proof. Since Y is rationally connected, by Lemma 3.11 we have very free rational
curvesR0; : : : ; Rl on Y whose curve classes spanN1.Y /. Let Li be the pullback of the Cartier
divisor OX .Di / to Y . By Example 3.7, the total contact order of Ri is given by the vector of
intersection numbers .D1 �Ri ; : : : ;Dr �Ri /. The center is fully free if and only if the matrix
M D .Dj �Ri / satisfies

(1) every entry of M is nonnegative,

(2) the rank of M is r .

Part (1) follows from the ampleness of Di . By the Lefschetz Hyperplane Theorem, the Cartier
divisors L1; : : : ; Lr are linearly independent in N 1.Y /Q. Part (2) then follows from the fact
that R0; : : : ; Rl span N1.Y /.

4. Log comb construction

We next introduce a comb construction in the log setting. Unlike the situation in [16],
the underlying stable map of the comb under consideration will be contained in a center. In
general, a stable map cannot be lifted to a stable log map. Sections 4.1, 4.2, and 4.3 is devoted
to showing that the configuration of stable maps in our situation can be lifted. We analyze the
deformation of such stable log map in Section 4.4, and then prove Theorem 1.3 by constructing
an unobstructed stable log map whose general smoothing produces a very free A1-curve.

4.1. The underlying comb. We fix some notation that will be used throughout this sec-
tion. Let X be a log smooth scheme with simple normal crossing boundaryD given by smooth
irreducible components D1; : : : ;Dk . For any � � Œk� WD ¹1; : : : ; kº, denote D� D

T

i2�Di .
Let D;Di ; and D� be the corresponding log schemes with the log structure restricted from X .

Definition 4.1. Assume that D� � X is a center. Write n WD j�j. A usual stable map
f W C ! D� is called a pre-log comb if

(1) C D C 0 [ P1 [ � � � [ Pm is a prestable curve with a unique marking q1 2 C 0.

(2) C 0 is a smooth irreducible curve of genus g, and Pi is an irreducible rational curve
attached to C 0 at a unique node ri .

(3) cij WD f
�
ŒPi � �Dj � 0 for each i D 1; : : : ; k and j 2 �. Write Eci D .ci1; : : : ; cin/.

(4) c1j WD f
�
ŒC � �Dj � 0 for all j 2 �. Write Ec1 D .c11; : : : ; c1n/.

A log comb in D� is a stable log map whose underlying map is a pre-log comb.

Remark 4.2. For future applications, we include the case with higher genus handle C 0.
This will not complicate our discussion below.

4.2. Combinatorial obstructions. Our next goal is to understand when a pre-log comb
f can be lifted to a stable log map toD�, hence to X . The first obstruction to have such lifting
is on the level of characteristic monoids, which is known as admissibility in the rank one case
[15, Definition 3.3.6].

Denote P WD
L

j2�Nj with Nj D hıj i Š N. Since the boundary of X has simple nor-
mal crossings, the log structure MX is of Deligne–Faltings type, and so is M�. By Lemma 3.2,
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there is a distinguished chart

ˇ W P ! M�:

Assume further that each copy of Nj corresponds to the log structure fromDj , see Example 3.7.
Write ci WD c.Pi / 2 .P gp/_ for each i , see (3.2.2). Consider ¹ı1; : : : ; ınº the set of standard
generators of P . Denote

cij D ci .ıj /:

Notation 4.3. To proceed further, we introduce the following:

(1) For each Pi (resp. C 0) we introduce Pi Š P (resp. P0 Š P ) with the set of standard
generators

¹ei1; : : : ; einº for i D 0; 1; : : : ; m:

Here eij is the vertex element corresponding to Dj as in [1, Section 4.1.2].

(2) For each node ri we introduce Ni D hli i Š N. Here li is the edge element of the node
ri as in [1, Section 4.1.2].

(3) For each i 2 ¹1; : : : ; mº, we introduce a morphism of monoids

�i WD id ˚ ci W P0 ! Pi ˚Ni

given by �i .ı/ D ı C ci .ı/ � li for ı 2 P0 Š Pi . This is given by the edge equation in
[1, Section 4.1.2].

Note that the sets of monoids ¹P0; P1 ˚N1; : : : ; Pm ˚Nmº and morphisms ¹�iº form
a finite system in the category of monoids, denoted by ˆ.

Denote by ˆgp the groupification of the finite system of ˆ consisting of group homo-
morphisms ¹�

gp
i W P

gp
0 ! P

gp
i ˚ N

gp
i º. Denote by G D lim

�!
ˆgp the colimit of ˆgp. By the

definition of colimits, we have the natural morphism

P0 ˚

m
X

iD1

.Pi ˚Ni / ! G:

Denote by N the saturated submonoid in M
gp

generated by the image of the above morphism,
and by N

�
� N the maximal subgroup of N . Let M D N =N

�
. Using the universal property

of colimits, we observe that

(4.2.1) M WD lim
�!

ˆ;

where the colimit is taken in the category of fine, saturated and sharp monoids. Indeed, one
checks that M is the minimal monoids constructed in [1, Section 4.1.2].

Remark 4.4. By [19, Lemma 3.3 (2)], there is a natural splitting M
gp

D P gp˚
Pm
iD1Z.

However, the monoid M is in general not the direct sum P ˚
Pm
iD1N. The colimit description

as above is helpful for proving the properties in Lemma 4.5 without calculating the precise
formation of M.
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By the formulation, we have the natural maps

�i W Pi ! M and ‚i W Ni ! M:

Lemma 4.5. Both ��1
i .0/ and ‚�1

i .0/ are the trivial monoid for any i .

Proof. Consider the set of morphisms

g0 D idP W P0 ! P and gi WD id ˚ 0 W Pi ˚Ni ! P

where gi is the projection to its first factor for i ¤ 0. Thus the set ¹giº
m
iD0 induces a morphism

from the system ˆ to P . Since P is a fine, saturated and sharp monoid, we obtain a morphism
g W M ! P . By the choice of gi , for any ı 2 Pi we have gi .ı/ D 0 if and only if ı D 0 in Pi .
This implies that ��1

i .0/ is trivial for any i .
For each i ¤ 0, we introduce a set of morphisms

hi0 WD ci W P0 ! N; hi i WD 0˚ id W Pi ˚Ni ! N

and
hij WD ci ˚ 0 W Pj ˚Nj ! N for j ¤ i :

Since P0 D Pj D P , the above morphisms are well-defined. Note that the set of morphisms
¹hij ºmjD0 induces a morphism from the system ˆ to N, hence a morphism M ! N. Further-
more, we check the composition Ni ! M ! N is the identity. This proves that ‚�1

i .0/ is
trivial for i D 1; 2; : : : ; m.

Remark 4.6. If f can be lifted to a stable log map f W C=S ! X , then the base monoid
MS will automatically satisfy the conditions in Lemma 4.5. In fact, the image of the generator
1 2 Ni under � corresponds to infinitesimally the smoothing parameter of the node ri . The log
lift f has a node ri if and only if �.1/ ¤ 0. The image of the element eij 2 Pi under �i is called
the degeneracy of the component Pi . If the lift f exists, then the image of Pi under f lying
inDj if and only if �i .eij / ¤ 0. Such a property of M is called admissible as in [15, Section 3].
The above lemma shows that there is no obstruction on the level of characteristic monoids to
lift f to a stable log map.

For later use, we will identity the elements li and eij with their images �i .eij / and‚i .li /
in M when there is no danger of confusion.

4.3. Lift to stable log maps. Consider a pre-logarithmic comb f W C ! D� as in Def-
inition 4.1. Let C ] ! S] be the log curve with the canonical log structure associated to the
underlying pre-stable curve .C ; q1/. We may fix a chart

ˇ] W P] WD ˚m
iD1Ni ! MS] :

Using the canonical map ˚i‚i W P] ! M and the chart ˇ], we form a new log structure over
S WD S] by M WD M ˚P]

MS] . Note that the inclusion ˇ W M ! M defines a chart of M.
Denote S D .S;M/. The morphism MS] ! M defines a morphism of log schemes S ! S].
Denote

C WD .C ;MC / D C ] �S] S;

where the fiber product is taken in the category of log schemes. We thus obtain the log curve
� W C ! S over the underlying prestable curve .C ; q1/.
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We now need to construct a log map f W C=S ! X over f . This amounts to construct
the map of log structures: f [ W f �

MX ! MC .
Consider the standard basis ¹ıj º of P where ıj corresponds to the component Dj . For

convenience, we may identify ıj with its image in f �
MX when there is no danger of confusion.

Denote by � the local coordinate near q1, and let log � be the corresponding image in MC .
For each node ri , denote by xi and yi the two coordinates around ri on C 0 and Pi , respectively.
Let log xi and logyi be the corresponding images in MC . Choosing the coordinates properly,
we may assume that

log xi C logyi D li ;

where li is identified with its image ˇ.li / in MC . Recall MX is given by the simple normal
crossings boundary. On the level of characteristic monoids, we have:

Lemma 4.7. There exists a unique morphism of sheaves of monoids

Nf [ W f �
MX ! MC

determined by

(1) Nf [.ıj / D e0j C c1j � log � at the marking q1,

(2) Nf [.ıj / D eij C cij � logyi at the node ri .

Here we identify log � and logyi with their corresponding images in MC .

Proof. It suffices to check the compatibility over the non-marked, smooth locus of C .
One may then check that the compatibility is precisely the minimality of the monoid M given
by (4.2.1).

Denote by  X W f �
MX ! f �

MX and  C W MC ! MC the quotient morphisms. The
inverse images Tj WD  �1.ıj / and Tj WD  �1

C . Nf [.ıj // form O
�
C -torsors. We observe that:

Lemma 4.8. To define a log map f W C=S ! X with Nf [ described as in Lemma 4.7 is

equivalent to have a set of isomorphisms of torsors Tj ! Tj for each j 2 �.

Proof. Denote by hTj i � f �
MX the sub-log structure generated by Tj . Since f �

MX

is globally constant of the form Nn, we have the splitting

f �
MX D hT1i ˝O� � � � ˝O� hTni:

Thus, to define a morphism f [ W f �
MX ! MC is equivalent to define a morphism of log

structures hT1i ! MC for each j 2 �.
Since we further require f [ to be compatible with Nf [ defined in Lemma 4.7, the image

of T1 in MC factors through Tj for each j 2 �. Furthermore, since f [ is a morphism of
monoids whose restriction f [jO� is the identity, f is uniquely determined by the induced
isomorphism of O

�-torsors f [jTj
W Tj ! Tj . This finishes the proof.

Proposition 4.9. There exists a stable log map f W C=S ! X over the pre-log comb

as in Definition 4.1 if and only if for each j 2 �, there is an isomorphism of line bundles

(4.3.1) NDj
jC0

Š OC0
.c1j � q1 �

m
X

iD1

cij � ri / over C 0:
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Proof. We notice that the restriction .Tj /jC0
is the torsor associated to N_

Dj
jC0

, and
Tj jC0

is the torsor associated to OC0
.�c1j �q1 C

Pm
iD1 cij �ri /. Furthermore, the restriction

.Tj /jPi
is the torsor associated to OPi

.�cij /, and Tj jPi
is the torsor associated to OPi

.�cij ri /.
Since the curve C is a comb with Pi Š P1, the statement follows from Lemma 4.8.

Corollary 4.10. Let f be a genus zero pre-log comb as in Definition 4.1. Then the log

lift f over f exists.

Proof. In the genus zero case, the existence of isomorphisms (4.3.1) follows from the
degree consideration.

4.4. Deformation of combs. We next study a more general situation where the combs
are not necessarily contained in the center. This generalization will not complicates the calcu-
lation, but is useful for studying the deformation of other types of combs [18, Section 3].

Hypothesis 4.11. Notation as in Section 4.1, consider the center D� with

D� D
\

i2�

Di :

Let f W C=S ! X be a genus g stable log map over a geometric point S with contact markings
q11; : : : ; q1k such that:

(1) C D
Sm
iD0 C i with smooth irreducible component C i Š P1 for i ¤ 0, and a smooth

genus g component C 0.

(2) For each i ¤ 0, we have a node ri 2 C joining C i and C 0.

(3) f
0

WD f jC0
W C 0 ! D� is an immersion.

(4) For i ¤ 0, f jC i
is also an immersion.

(5) For i ¤ 0, Eci WD .cij /j2� viewed as a k-vector is non-zero, where cij D f�ŒCi ��Dj 2 Z.

(6) For each l , the image of the contact order of q1l (see (2.2.1)) in M
_

X;f .q1l /
˝Z k is

non-zero.

In the above setting, if we further require f .C / � D�, then we obtain the logarithmic
comb in Definition 4.1.

The stable log map f in Hypothesis 4.11 may have log structures different then the one
in Section 4.3. However, to analyze the deformation theory, only the existence of f is needed.

Lemma 4.12. Notation as in Hypothesis 4.11, the morphism

df W f ��X ! �C=S

is surjective with locally free kernel, denoted by N_
f

.

Proof. It suffices to check the statement locally on the underlying curve C . Locally near
points of C where f is a local immersion, the statement is identical to the classical situation
without log structures. We next check the statement locally around a node ri 2 C .
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Denote by xi and yi the two local coordinates of the two components C i and C 0 around
ri , respectively. Then the line bundle �C=S locally around ri is generated by the section

dxi
xi

D �
dyi
yi
:

On the target side, denote by ¹ıj ºj2� the local sections of MX around f .ri / such that ıj
corresponds to the defining equation of Di near f .ri /. Then the set of local sections ¹

dıj
ıj

ºj2�

spans a rank j�j sub-bundle of �X locally around ri . By choosing coordinates ¹ıj º carefully,
and using Hypothesis 4.11, we may assume that

f [.ıj / D cij log xi ;

where log xi denotes the corresponding section in MC locally around ri . We thus calculate that

(4.4.1) df W

�

dıj
ıj

�

j2�

7! Eci �
dxi
xi

D �Eci �
dyi
yi
:

Since Eci is a non-zero k-vector, the desired statement around ri follows.
The case of marked points follows from a similar calculation.

To calculate the deformation of log combs, we study the structure of the log cotangent
bundle �X along D�.

Lemma 4.13. Notation as above, there is a natural exact sequence

0 ! �D�
! �X jD�

! O
˚j�j
D�

! 0:

Proof. For simplicity, we assume that D� � Di for all i . We have an exact sequence

(4.4.2) 0 ! N_
D�=X

! �X jD�
! �D�

! 0

On the other hand, we have the residue sequence

0 ! �X ! �X !
X

i

ODi
! 0:

Tensoring with OD�
, we obtain the exact sequence

(4.4.3) 0 !
X

i

Tor
OX

1 .OD�
;ODi

/ ! �X jD�
! �X jD�

! O
˚j�j
D�

! 0:

To calculate the left-hand side, we take the resolution

0 ! OX .�Di / ! OX ! ODi
! 0:

Tensoring with OD�
, we have the exact sequence

0 ! Tor
OX

1 .OD�
;ODi

/ ! OD�
.�Di / ! OD�

Š
! OD�

! 0

hence
Tor

OX

1 .OD�
;ODi

/ Š OD�
.�Di /:
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The sequence (4.4.3) becomes

(4.4.4) 0 ! N_
D�=X

! �X jD�
! �X jD�

! O
˚j�j
D�

! 0:

Putting (4.4.4) and (4.4.2) together, we obtain the exact sequence as in the statement.

Lemma 4.14. Assume that Hypothesis 4.11 holds. We obtain the following commutative

diagram with exact rows and columns:

(4.4.5) 0

��

0

��

0

��

0 // N_
f

0

//

��

N_
f

jC0
//

��

V //

��

0

0 // f �

0
�D�

//

��

f ��X jC0
//

��

O
˚j�j //

�

��

0

0 // �C0
//

��

�C jC0
//

��

P

i kri
//

��

0

0 0 0.

Furthermore, the restriction �jri
is given by the .1 � j�j/-matrix .�Eci /. In particular, the vector

bundle V _ is the elementary transform of the trivial vector bundle along the direction Eci ,

see [49, Lemma 3.15].

Proof. Observe that the middle row is obtained by pulling back the exact sequence in
Lemma 4.13, and the middle column follows from Lemma 4.12.

Now consider the bottom row. Since C 0 is a component of C , it suffices to consider the
morphism

(4.4.6) �C0
! �C jC0

at each node ri . Let xi and yi be the local coordinates around ri as in the proof of Lemma 4.12.
Then locally around ri , the bundle�C0

is generated by the local section dyi , and�C is gener-
ated by the local section dyi

yi
. Thus, (4.4.6) is the obvious injection with cokernel supported on

each node ri as in the diagram. Indeed, kri
is the torsion sheaf supported on ri with generator

given by the image of dyi

yi
. This proves the exactness of the bottom row.

Next, consider the commutativity of diagram (4.4.5). By diagram chasing, it suffices to
show the commutativity of the lower left corner which follows from f

0
D f jC0

. Using the
commutativity, we observe that

N_
f0

! f ��X jC0
! �C jC0

is the zero morphism, hence it factors through N_
f

jC0
.

Finally, we calculate the morphism �. Recall that kri
is the torsion sheaf supported on ri

with generator given by the image of dyi

yi
. On the other hand, the morphism�X jD�

! O
˚j�j is

induced by taking the residue along each divisorDj with j 2 �. Thus, using the notation in the
proof of Lemma 4.12, for each j 2 �, the corresponding copy of O in O

˚j�j has a generator
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given by the image of dıj
ıj

. Hence, locally around each ri , the morphism � is induced by (4.4.1).
In particular, �jri

is given by .�Eci /.

4.5. Proof of Theorem 1.3. The proof is divided into several steps.

Step 1: Reduction to the simple normal crossings case.

Lemma 4.15. Let Y be a center of a log smooth variety X . Suppose that Y is proper,

separably rationally connected, and fully free (resp. primitively free). For any proper, bira-

tional, log étale morphism � W X 0 ! X , there exists a center Y 0 of X 0 over Y such that Y 0 is

fully free (resp. primitively free).

Proof. Denote by A the set of centers of X 0 over Y . Consider a center Y 0 2 A. By
Lemma 3.3 (3), the projection Y 0 ! Y is indeed an isomorphism. Hence Y 0 is also separably
rationally connected.

By Lemma 3.4, we may take distinguished charts ˇ W P ! MY and ˇ W QY 0 ! MY 0 .
The morphism � W X 0 ! X induces an inclusion of cones .QY 0/_ ,! P_ such that

.Q
gp
Y 0/

_ D .P gp/_:

We may view .QY 0/_ as a sub-cone of P_. Since � is proper, log étale, and birational, we
have

P_ D
[

Y 02A

.QY 0/_:

Thus, by Lemma 3.8, every log admissible curve in Y is also log admissible in one of the
center in A. Since the set A is finite, there exists some Y 0 2 A which has a log admissible free
rational curve F ! Y 0 such that cY 0.F / is contained in the interior of .QY 0/_. We next show
that such Y 0 is fully free.

Consider a set of log admissible free rational curves B D ¹F 1; : : : ; F kº on Y whose
total contact orders span P_ ˝Z k. We may choose a sufficiently large m 2 N such that

B 0 D ¹F 0
1 D m � F C F 1; : : : ; F

0
k D m � F C F kº

are all log admissible. The smoothing techniques in [34, Section II.7] imply that the curve
classes in B 0 can be represented by free rational curves in Y 0. Thus Y 0 is fully free.

The primitivity of Y 0 follows from the same argument.

By [45, Theorem 5.10], there exists a birational, log étale resolution � W X 0 ! X such
that X 0 has simple normal crossings boundary. Using Lemma 4.15, we may assume that X has
simple normal crossings boundary.

Step 2: Construct the log comb. By assumption, there exists free rational curves
R1; : : : ; Rl on Y such that their total contact orders lie in P_, and span the k-vector space
.P gp/_ ˝Z k. Then there exists an open subset V � Y such that every point in V is contained
in the image of a free deformation of Ri for all i . Now we construct a pre-log comb:

(1) (handle) a very free rational curve f
0

W C 0 ! Y whose general point lies in V ,

(2) (teeth) for i D 1; : : : ; m, a free rational curve f
i

W Ci WD P1 ! Y in Y which is a defor-
mation of some Rj .
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C
0

C
1

C
2

� � � C
m

q1

Figure 1. The curve C .

For i ¤ 0, glue f
i

to f
0

along points pi 2 C i and qi 2 C 0. This yields a pre-log comb
f W C ! Y as in Definition 4.1. We may pick a general smooth point q1 2 C 0. By Corol-
lary 4.10, we can lift f to a stable log map f W C=S ! X with a unique marking q1. A figure
of the underlying curve C is depicted in Figure 1.

Consider the log smooth variety X � P1, where we equip P1 with the trivial log struc-
ture. The fully free center Y gives a fully free center Y � P1 of X � P1. We note that any free
(resp. very free) rational curve u W P1 ! Y gives a free (resp. very free) immersed rational
curve on Y � P1 by taking its graph curve, and any very free A1-curves on X � P1 project
to a very free A1-curve on X . Thus, replacing X by X � P1, we may assume that f is an
immersion on each irreducible component of C .

Step 3: Analyzing the positivity. We are now in the situation of Hypothesis 4.11 with
D� D Y . We next analyze the positivity of Nf D .N_

f
/_ as in Lemma 4.12. Pick two general

points t1 and t2 on C 0, we have

(4.5.1) 0 !
[

i¤0

Nf jCi
.�pi / ! Nf .�t1 � t2/ ! Nf jC0

.�t1 � t2/ ! 0:

For each i ¤ 0, since Ci is a free rational curve in the center, using the left vertical exact
sequence in (4.4.6), we have

H 1.Nf jCi
.�pi // D H 1.NCi

.�pi // D 0:

Sincem can be sufficiently large, and the total contact orders ofR1; : : : ; Rl span .P gp/_ ˝Z k,
by Lemma 4.14 and [49, Lemma 3.15], we conclude that

H 1.Nf .�t1 � t2/jC0
/ D 0:

By (4.5.1), we have H 1.Nf .�t1 � t2// D 0. By [47, Theorem 5.9], f is unobstructed, and
a general deformation of f produces an A1-curve with positive log normal bundle, thus a very
free A1-curve.

Corollary 4.16. Let X be a log smooth variety with a proper, Deligne–Faltings-type

center Y � X . Then a rational curve f W C D P1 ! Y can be lifted to a stable log map with

at most one marking f W C=S ! X if and only if the curve f is log admissible. If we further

assume that f is free on Y , then a general deformation of f is a free log rational curve. In

particular, X is separably log uniruled.

Proof. By a similar argument as in Lemma 4.15, it suffices to consider X has simple
normal crossings boundary. The existence of the log lift follows from Corollary 4.10. By
Lemma 4.13 and [47, Theorem 5.9], f is unobstructed whose general deformation yields a free
log rational curve.
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5. Wonderful compactifications

5.1. Basics on spherical varieties. Let G be a linearly reductive k-group. Let T be
a maximal torus of G and let B be a Borel subgroup containing T . For any subgroup H � G,
denote by Hu the unipotent radical of H . We write X�.H/ and X�.H/ for the character and
cocharacter groups of H , respectively.

Definition 5.1. Let X be a G-variety. The variety X is a separably spherical variety

if it is normal, and contains a dense open separable B-orbit. A subgroup H � G is separably
spherical if G=H is so.

For the reader’s convenience, we collect a list of standard terminologies and results that
are known to experts, and will be used in this section. Those can be found in standard refer-
ences, for example [31].

Terminology 5.2. LetG=H be a spherical homogeneous space. We fix a point o 2 G=H

whose B-orbit is dense. We use X to denote a spherical variety which contains G=H as the
open G-orbit.

(1) Let k.X/ be the field of rational functions on X . Denote by k.X/
.B/
o the set of B-eigen-

functions (B-semi-invariant functions) on X given by

¹f 2 k.X/ X ¹0º W f .o/ D 1; bf D �.b/f for all b 2 B;where � 2 X�.B/º:

Since we require that f .o/ D 1, such a B-eigenfunction f is uniquely determined by its
character �.

(2) Let ƒ WD ƒ.X/ be the set of weights of k.X/
.B/
o . It is a finitely generated free abelian

group. Its rank is called the rank of G=H . Indeed we have

k.G=H/.B/o Š ƒ:

We use f� to denote the B-eigenfunction determined by � 2 ƒ.

(3) Define the valuation space N.X/ WD HomZ.ƒ;Q/ with the integral structure

N.X/Z D ƒ_:

(4) Let �.X/ be the set of B-stable but not G-stable prime divisors on X , called the set of
colors. The set �.X/ only depends on G=H , see [31, Section 2].

(5) Any discrete valuation � W k.X/� ! Q gives an element �� in N.X/ by restriction
to k.X/

.B/
o .

(6) Let DG.X/ be the set of G-invariant valuations on X . The valuation map

DG.X/ ! N.X/

is injective. Denote by V.X/ the Q-cone generated by the image of DG.X/ in N.X/.
This is a convex cone, called the valuation cone.

(7) Sinceƒ.X/;N.X/;�.X/;V.X/ defined above only depend on the denseG-orbitG=H ,
we simply omit X and use ƒ;N;�, and V .

(8) The valuations given by � induce a map �j� W Z� ! NZ.
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(9) A spherical variety X is called toroidal if no D 2 � contains a G-orbit in its closure.
It is called simple if it has a unique closed G-orbit. We say that X is a compactification

of G=H if it is proper.

(10) A spherical subgroup H � G is called sober if NG.H/=H is finite.

(11) When H is sober and separably spherical, the valuation cone V associated to G=H is
a strictly convex full-dimensional cone in N , see [31, Corollary 5.3, Theorem 6.1]. In
this case, anyG-equivariant toroidal compactification ofG=H is uniquely determined by
a fan† supported on V . The fan† and the cone V are called the colored fan and colored

cone, respectively.

(12) For a sober and separably spherical subgroup H , the compactification X of G=H asso-
ciated to the colored fan .V ;;/ is called the wonderful compactification of G=H . In this
case, X is both toroidal and simple with a unique closed orbit Y � X.

(13) For any spherical G-variety X and any G-orbit Y � X , we define the open set

XY ;B D X X
[

D;

where the union is taken over all B-stable prime divisors that do not contain Y .

5.2. Log structures on toroidal embeddings. The goal of this subsection is to define
a naturalG-equivariant log structure on toroidal spherical varieties, and to find a good criterion
for a spherical variety to be log homogeneous in the following sense.

Definition 5.3. Let H be an algebraic group. H as a log scheme with the trivial log
structure can be viewed as a group object in the category of log schemes, see [53, Defini-
tion 2.11]. An H -action on a log scheme Y is the action of the group object H on Y in the
category of log schemes, see [53, Definition 2.15]. A log scheme Y equipped with anH -action
is called a log H -scheme.

Remark 5.4. To be more precise, anH -action on a log scheme Y is a strict morphism of
log schemesH � Y ! Y whose pullback toH �H � Y satisfies the usual cocycle condition,
see [53, Proposition 2.16]. When Y is a log smooth variety, the structure morphism MY ! OY

is an inclusion. Thus, anH -action on Y is uniquely determined by the correspondingH -action
on Y with the induced action on the MY as the subsheaf of OY . In what follows, we will mainly
consider H -actions on a log smooth variety.

Definition 5.5. A log smooth log H -variety X is called log homogeneous if the mor-
phism of sheaves h ˝ OX ! TX is surjective, where h is the Lie algebra of H , and TX is the
log tangent bundle of the log scheme X .

The main result of this subsection is the following:

Proposition 5.6. Let X be a toroidal compactification of a separably spherical homo-

geneous space G=H . Assume that all closed G-orbits of X are separable. Then:

(1) The pair .X;X XG=H/ is toroidal, which yields a log smooth log G-variety X .

(2) The log smooth log G-variety X is log homogeneous.
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We first recall the following local structure result of spherical varieties.

Theorem 5.7 (Local structure theorem). Let X be a spherical G-variety. Let Y � X

be a G-orbit containing a geometric point x such that Bx is open in Y . Define the parabolic

subgroup Q to be the stabilizer of XY ;B and choose a Levi subgroup L of Q. Then:

(1) XY ;B is affine B-stable.

(2) Let T be the maximal torus in B . There exists an affine T -stable closed subvariety M of

XY ;B such that the group action morphism

� W Qu �M ! XY ;B

is finite surjective and ��1.x/ D ¹.e; x/º, where e is the identity.

(3) If we further assume that Y is a separable G-orbit, the action morphism � is an isomor-

phism.

(4) If Y is G-separable and X is toroidal, the variety M is an affine toric embedding of

a torus A given by the quotient L=L0, where L0 � L is a subgroup containing the

derived group of L. Furthermore, we have

ƒ Š X�.A/

via the restriction of B-eigenfunctions on M . The toric variety M is determined by the

colored cone associated to Y .

(5) With the same assumptions in (4), every G-orbit of XY ;B is of the form Qu �M 0, where

M 0 is an A-orbit. In particular, there is a bijection between G-orbits in X and A-orbits

in M .

Proof. Statements (1) and (2) are proved in [32, Theorem 1.2].
(3) Since we canG-equivariantly embed X into P .V /, where V is a simpleG-module, it

suffices to prove the case when X D P .V / (not necessary spherical) and XY ;B is the comple-
mentary in P .V / of the unique B-stable hyperplane. This is proved in [25, Proposition 1.3].

The statement (5) and the first assertion of (4) are proved in [25, Theorem 1.4] (requiring
M to be smooth is not necessary).

By (3) and (5), it is easy to see that there is a bijection between B-eigenfunctions on X
and A-eigenfunctions on M via restriction, which preserve the order given by inclusion of
orbits. This proves (4).

Lemma 5.8. A spherical variety X is covered by G-translations of XY ;B for any

G-orbit Y . Furthermore, when X is proper, one may choose Y to be any closed G-orbit.

Proof. The first statement follows from [31, Section 2.1]. For each Y , the simple em-
bedding GXY ;B of G=H gives a strictly colored cone .C ;F / (see [31, Theorem 3.3]). When
X is proper, it belongs to a strictly colored cone of maximal dimension given by GXY 0;B for
a closed G-orbit Y 0 with GXY ;B � GXY 0;B . The second statement then follows.

Proof of Proposition 5.6. Statement (1) follows from Theorem 5.7 and Lemma 5.8.
Now consider the second statement. By further subdividing the colored fan of X , we may take
a G-equivariant log étale birational morphism f W Z ! X such that Z is smooth. Since the
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log structure is Zariski and f isG-equivariant, any closed orbit ofZ maps isomorphically onto
a closed orbit on X . Thus the G-action on the closed orbits of Z is separable. By [25, Theo-
rem 1.8], Z is log homogeneous. Since f �TX D TZ and toric singularities are rational, the
projection formula implies that f�TZ D TX . Hence X is log homogeneous as well.

5.3. Global charts of wonderful compactifications. For the rest of this section, we fix
the following notation.

Notation 5.9. Let G be a reductive group, and let H � G be a sober and separable
spherical subgroup. Denote by X the wonderful compactification of G=H as in Terminol-
ogy 5.2 (10), (11), and (12). Since X is simple, denote by Y � X its unique closed orbit.

If Y is G-separable, we obtain a log smooth variety X D .X;M/ with the G-action by
Proposition 5.6. Denote by X1; : : : ; X t the irreducible boundary components of X, and by
� D ¹D1; : : : ;Dsº the set of colors. Let Xı WD X X� be the dense B-stable open subset, and
let Xı be the corresponding log variety. The stabilizer group of Xı is a parabolic subgroup Q.
Denote P WD V

_ \ƒ.

Lemma 5.10. Assume that Y isG-separable. With the same notation as in Theorem 5.7,

for each B-eigenfunction f� with � 2 P , we have the following:

(1) f is regular on Xı.

(2) p�
2 .f jM / D f , where p2 W Xı Š Qu �M ! M .

In particular, we obtain a chart

(5.3.1) P ! Mı WD MjX
ı
; � 7! f�:

Proof. Statement (1) is proved in [31, Theorem 2.5]. For (2), it suffices to show that
each B-eigenfunction is constant on Qu � ¹mº for every m 2 M . This follows from the fact
that Qu is a unipotent subgroup of B which only has the trivial character.

Proposition 5.11. Let Y be G-separable. Then there exists a global chart ˇ W P ! M

induced by (5.3.1) whose restriction to the unique center Y � X induces the distinguished

chart as in Definition 3.1.

Proof. We first notice that the sheaf of monoids MjY is a globally constant sheaf of
monoids in P . Thus, it suffices to construct a global chart P ! M WD M=O�.

By Lemma 5.8, X is covered by ¹gXıº¹g2Gº. For each open subset gXı, we construct
the morphism

P ! MjgX
ı

sending � to gf� similar to (5.3.1). To check that this local morphism gives a global morphism
from P to M, it suffices to show that gf� and f� differ by an invertible function on the com-
mon intersection. Consider the rational function gf�=f� on Xı \ gXı. By Lemma 5.10, it has
nontrivial zeros or poles only at the boundary divisors X i \ Xı \ gXı. Since Xı is normal,
and each prime boundary divisor corresponds to a G-invariant valuation, gf�=f� is invertible
on Xı \ gXı.

The above global chart ˇ is natural in the following sense.
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Proposition 5.12. Assume that Y is G-separable. Consider the morphism as in (3.2.1)

L W ƒ Š P gp ! Pic X

induced by the global chart ˇ. Recall that in this situation, the group Pic X is freely generated

by the colors by [5, Theorem 1]. Then we have:

(1) L.�/ D OX.
Pt
iD1 �X i

.f�/X i /.

(2) The map �L_ is the valuation morphism on colors �j� W Z� ! N as in Terminol-

ogy 5.2 (8).

Proof. The first statement follows from the proof of Proposition 5.11. Since each eigen-
function f� has only poles or zeros along the X i or Di , we have

divf� D

t
X

iD1

�X i
.f�/X i C

s
X

jD1

�Dj
.f�/Dj :

Thus we have the second statement.

5.4. A
1-curves on wonderful compactifications. We introduce two technical assump-

tions, which greatly simplifies the structure of the set of A1-curve classes on X. Later we will
verify those two assumptions for a large class of interesting cases.

Hypothesis 5.13. There exists B-invariant irreducible rational curves B1; : : : ; Bs on Y
such that B i \Dj D ıij and NE.X/ D NhB1; : : : ; Bsi.

By Proposition 5.11, the following is compatible with Definition 3.6.

Definition 5.14. The total contact order of a curve class F 2 N1.X/ is the element
c.F / 2 .P gp/_ defined by

c.F /.ı/ D c1.Lˇ .ı// � F for any ı 2 P gp:

A curve class F is log admissible if c.F / 2 P_. Denote by NE.X/ � NE.X/ the semi-group
of log admissible effective one-cycles on Y .

Lemma 5.15. Assume that Y is G-separable, and that Hypothesis 5.13 holds. For

i D 1; : : : ; s, we have:

(1) degL.�/jBi
D ��Di

.f�/, and hence c.B i / D ��Di
D ��j�.Di / with c introduced in

Definition 3.6.

(2) NE.X/ D ¹F D
Ps
iD1 aiB i W ai 2 Z�0; �

Ps
iD1 ai�j�.Di / 2 Vº.

Proof. This follows from Proposition 5.12.

We further consider the following:

Hypothesis 5.16. The opposite of the valuation cone �V is contained in the Q-cone
generated by �.Di / for i D 1; : : : ; s.
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Lemma 5.17. Assume that Hypothesis 5.16 holds. Then the morphism L W ƒ ! Pic.X/
is injective. Furthermore, the following are equivalent:

(1) ��j� W Z� ! ƒ_ is surjective.

(2) The cokernel of L W ƒ ! Pic.X/ Š Z� is torsion-free.

Proof. Since V is a strictly convex cone in N , see Terminology 5.2 (11), the injectivity
follows from Proposition 5.12, and the observation that the cokernel of ��j� is finite. The rest
of the statement is a direct consequence of the injectivity.

We summarize the discussion as follows:

Theorem 5.18. Let X be the log smooth variety associated to the wonderful com-

pactification of a sober separably spherical homogeneous space G=H , containing a unique

G-separable closed orbit, see Proposition 5.6. Assume that Hypothesis 5.13 and 5.16 hold.

Then we have:

(1) Any log-admissible effective curve class on X can be represented by a free log rational

curve on X.

(2) If char k − Œƒ_ W �j�.Z
�/�, then the unique G-closed orbit is a fully free center of X.

In particular, X is separably A1-connected.

(3) The center of X is primitively free if and only if the cokernel of L W ƒ ! Pic.X/ Š Z�

is torsion-free.

Proof. Hypothesis 5.16 implies that the class NE.Y / is not empty. For any element
F D

Ps
iD1 aiB i 2 NE.X/, there exists a rational curve f W P1 ! Y whose curve class is

F since Y is a homogeneous space. By Corollary 4.16, there exists a log map f lifting f
as log rational curve on X. By Proposition 5.6, f is unobstructed in the moduli space of
A1-curves, f can be deformed to a log rational curve on X. This implies (1).

For the second statement, we first choose a basis Fi of �j�.Z
�/with Fi 2 NE.X/. Since

each Fi can be represented by a free rational curve on Y , the assumption on characteristic of the
base field k implies that Y is a fully free center. By Theorem 1.3, X is A1-connected. Finally,
(3) is a direct consequence of Lemma 5.17 and Definition 3.9.

5.5. The characteristic zero case. In this subsection, we adopt the notation of Sec-
tion 5.3, and assume that char k D 0. The goal is to give a proof of Theorem 5.25 by verifying
the assumptions in Theorem 5.18. We first assume that G is semisimple and simply connected.
To verify Hypothesis 5.13, we recall the idea of Luna on spherical closures.

Definition 5.19 ([39, Section 6.1]). Let K be a spherical subgroup of G. The automor-
phism group NG.K/=K naturally acts on �. The spherical closure K of K is the kernel of the
action of NG.K/ on �. We say that a subgroup L is spherically closed if L D L.

Recall the following facts from [52, Remark 30.1]:

Lemma 5.20. Let H be the spherical closure of H , and let X0 be the log variety asso-

ciated to the wonderful compactification of G=H . There is a G-equivariant morphism of log
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varieties � W X ! X0 such that:

(1) X0 is smooth, see [33, Corollary 7.6].

(2) Let ƒ0 and V
0 be the weight lattice of X0 and the valuation cone of X0, respectively. We

have V D V
0 andƒ0 � ƒ. In particular, � is a finite log étale morphism (or equivalently

Kummer étale), and �jY is an isomorphism onto the closed G-orbit Y 0 � X0.

(3) The set of colors �0 D ¹D0
1; : : : ;D

0
sº on X0 is identified with � by pullback, i.e. we have

��1.D0
i / D Di .

We briefly recall the types of colors on wonderful compactifications [39]. Let † be the
finite set of spherical roots of X , lying in the character lattice of T . See [39, Proposition 6.4].
We say a simple root ˛ moves a color D if P˛D ¤ D, where P˛ is the minimal parabolic
group containing B and associated to ˛. Each color D is moved by a unique simple root ˛D .
Let �.˛/ be the set of colors moved by ˛.

Definition 5.21. We say that the color D is

(1) of type (a) if �.˛D/ contains two colors,

(2) of type (a’) if �.˛D/ D ¹Dº and 2˛ 2 †,

(3) of type (b) if �.˛D/ D ¹Dº and no multiple of ˛ is in †.

By [39, Section 1.4], each color belongs to a unique type as above.

Proposition 5.22. Assume that char k D 0. Then Hypothesis 5.13 holds when all colors

of X are of type (b).

Proof. This follows from [19, Theorem 2.4 and Lemma 2.12].

Proposition 5.23. Assume that char k D 0. Then Hypothesis 5.16 holds.

Proof. Consider the G-equivariant morphism � W X ! X0 as in Lemma 5.20. Notice
that X and X0 share the same valuation cone and the same set of colors via pullback. It suffices
to check statement on X0, which is given by [7, Lemma 2.1.2].

Proposition 5.24. When char k D 0, we have the following short exact sequence:

0 ! ƒ ! Pic.X/ ! X�.H/ ! 0:

Proof. The case when X is smooth is proved in [7, Proposition 2.2.1]. The proof for
the general case is similar. Let  W G ! G=H be the quotient map. The following short exact
sequence in [7, (2.2.5)] still holds in our case:

0 ! X�.B/B\H ! X�.B/ �X�.B\H/ X�.H/ ! X�.H/ ! 0:

Here the first term X�.B/B\H is the set of weights of B-eigenfunctions on X, hence isƒ. The
second term X�.B/ �X�.B\H/ X�.H/ is the set of weights of B �H -eigenfunctions on G.
It is freely generated by the B �H -weight of fD , D 2 �, where fD is the defining equation
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of  �1.D/ onG with fD.o/ D 1, see [39, Lemma 6.2.2]. Furthermore, the following diagram
commutes because �D.f / D � �1.D/.�

�f /:

X�.B/B\H // X�.B/ �X�.B\H/ X�.H/

ƒ // Pic.X/.

The proposition then follows.

To summarize, we have:

Theorem 5.25. Assume that char k D 0, and that X is the log smooth variety associated

to a wonderful compactification of an open sober spherical homogeneous space G=H with G

semisimple and simply connected. Further assume that all colors of X are of type (b). Then we

have:

(1) Any log admissible effective curve class on X can be represented by a free log rational

curve on X.

(2) The unique closed orbit is a fully free center of X. In particular, X is A1-connected.

(3) The center of X is primitive if and only if X�.H/ is torsion-free. In particular, when H

is connected, the center of X is primitive.

Proof. The statements follow from Theorem 5.18 and Propositions 5.22, 5.23 and 5.24.
Note that H is connected implies X�.H/ is torsion-free.

Proof of Theorem 1.7. We now consider the general case that G is reductive. Denote
by Z0 the connected component of the center of G. Since the wonderful compactification X

of G=H contains a unique closed orbit, by [5, Lemma 1] G acts on X via the semisimple
quotient G=Z0, and Z0 � H . Replacing G andH by the quotients G=Z0 andH=Z0, respec-
tively, we may assume that X is the wonderful compactification of G=H with G semisimple.
Theorem 1.7 follows from Theorem 5.25 by further replacingG by its simply connected cover,
which is again semisimple.

5.6. Semisimple groups. LetG be a semisimple linear algebraic k-group of rank r , and
let B be a Borel subgroup containing a maximal torus T . Denote by E WD X�.T /˝Z Q the
Q-vector space with the Euclidean product . � ; � / given by the Killing form. Let .E;ˆ/ be the
root system associated to .G; T / with the set of positive simple roots � WD ¹˛1; : : : ; ˛rº � ˆ

associated to B . Let ƒR be the root lattice generated by �. Let ƒR_ be the coroot lattice in E
generated by the coroots

˛_
j D

2

. j̨ ; j̨ /
j̨ ; j D 1; : : : ; r:

Let CC be the positive Weyl chamber spanned by the positive linear combination of
fundamental weights. Denote by C� WD �CC the negative Weyl chamber.

The group G is a separable spherical homogeneous space under G �G by

.g; h/:k D gkh�1;



30 Chen and Zhu, A1-curves on log smooth varieties

because it contains aB � B�-dense orbit by Bruhat decomposition. Denote XG by the wonder-
ful compactification of G and denote XG by the associated log variety.

Proposition 5.26. We have the following properties:

(1) ƒ Š X�.T / and N Š X�.T /˝Z Q.

(2) V is the negative Weyl chamber.

(3) The set of colors� maps bijectively to the set of simple coroots under �j� and the image

of �j� is the coroot lattice in N .

Proof. In characteristic zero, the first two statements were proved by Brion [8, Sec-
tions 3.1, 4.1]. Since Brion’s argument only uses basic properties of spherical embeddings [31]
and the Local Structure Theorem 5.7, statements (1) and (2) hold in arbitrary characteristic.

For (3), it suffices to consider the case whereG is simply connected. In this case, we know
that each defining equation fi of Di is a B � B�-eigenfunction with the weight .�i ;��i /,
where �i is a fundamental weight [9, Proposition 6.1.11]. Since ƒ is generated by the funda-
mental weights and �Di

.fj / D ıij , we conclude that �.Di / is a simple coroot.

Theorem 5.27. Let G be a semisimple linear algebraic k-group with arbitrary charac-

teristic char k � 0, and let XG be the log smooth variety associated to the wonderful compact-

ification of G. Let ƒR_ be the coroot lattice of G, and let C be a positive Weyl chamber of the

root system of .G; T / with a maximal torus T . Then we have the following:

(1) Any log-admissible effective curve class on XG can be represented by a free A1-curve

on G. Furthermore, we have NE.X/ D ƒR_ \ C
C.

(2) If we further assume that char k − j�1.G; T /j, then the unique closed orbit is a fully free

center of XG . In particular, XG is separably A1-connected.

(3) The unique closed orbit as the center of X is primitively free if and only if G is simply

connected. In this case, it is separably A1-connected in arbitrary characteristic.

Proof. We check that all hypotheses of Theorem 5.18 are satisfied. Clearly the center
Y Š G �G=B � B� � XG is G-separable. Hypothesis 5.16 follows from Proposition 5.26.
Hypothesis 5.13 can be verified by an argument similar to the proof of [19, Theorem 2.4].
We may consider the G-equivariant morphism XG ! XGad

, where the latter is smooth, see
[9, Theorem 6.1.8]. By Bruhat decomposition [4, Theorem 22.6], the pullback of a color on
XGad

is a (reduced) color on XG . Applying the projection formula as in the proof of [19, Theo-
rem 2.4], we get a basis of B-invariant curves for NE.X/. All such curves lie on the center
Y because the Weyl group acts transitively on the torus fixed points XT . See [5, Theorem 2]
and [9, Proposition 6.2.3]. Now the theorem follows from Lemma 5.15, Proposition 5.26, and
Theorem 5.18.

6. The Logarithmic Hartshorne conjecture

In this section, we fix a connected log smooth (possibly with singular underlying struc-
ture) variety X . Let r W Y ! X be a birational log étale morphism of connected log smooth
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varieties with Y smooth. In particular, Y has normal crossings boundary. Denote by �X and
�Y the boundary of X and Y , respectively. Write U D X X�X D Y X�Y .

Definition 6.1. A line bundle L overX is called interior-positive if L � C > 0 for every
irreducible proper curve C on X such that U \ C ¤ ;.

Lemma 6.2. If �KX is interior-positive overX , then �KX 0 is interior-positive overX 0

for any log étale birational morphism � W X 0 ! X .

Proof. This follows from the projection formula and ��KX D KX 0 .

Lemma 6.3. Assume that �KX is interior-positive. For any point x 2 U , there is an

irreducible rational curve Z ! X such that x 2 Z, and �KX �Z � dimX C 1, where the

equality holds only if Z ! X factors through U .

Proof. We first choose an arbitrary usual stable map f W C ! X through x with C
smooth and irreducible, hence a stable log map f W C ! X . Taking proper transform, we
obtain a stable log map f 0 W C ! Y with f D f 0 ı r . Since r is log étale, we obtain

.�KY / � C D .�KY / � C C�Y � C � �KY � C D �KX � C > 0:

By Mori’s Bend-and-Break, there is a rational curve Z ! Y through x with

.�KY / �Z � dimY C 1:

Composing with r , we obtain a rational curve Z ! X through x. Then we calculate

.�KX / �Z D .�KY / �Z D .�KY / �Z ��Y �Z � dimX C 1:

Here the equality holds only if �Y �Z D 0. This concludes the proof.

The next result is due to Keel–McKernan [30]. Here we slightly strengthen the result to
fits our needs.

Proposition 6.4. Assume that �KX is interior-positive. Then for any closed point x 2 U

there is a genus zero stable log map f W C ! X through x such that it is minimal with respect

to a fixed polarization H among all curves that contain x and f satisfies one of the following

properties:

(1) f is a P1-curve with degf �.�KX / � nC 1.

(2) f is an A1-curve with degf �.�KX / � n.

Proof. By Lemma 6.3, we choose an irreducible rational curve inX through x. We then
have a genus zero log map f W C ! Y .

We may assume that deg f �H is minimal. By the usual Bend-and-Break Lemma, we
may further assume that .�KY / � C � nC 1. The size at a contact marking is the length
of f ��Y . We may assume that f achieves the maximal size at a contact marking among
all such genus zero stable log maps through x.
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Assume that f is not an A1 or P1-curve. Let k � 2 be the number of contact markings
of f . We also mark one point t mapped to x. Let M be the moduli stack of stable log maps
with discrete data giving by f . Since

.�KY / � C D .�KX / � C > 0;

we calculate
dimŒf �M.t/ � .�KY / � C C k C 1 � 3 > k � 2 � 0:

where M.t/ � M denotes the closed substack fixing the marking t . Thus the image of f moves
fixing t 7! x.

Since f is minimal with respect to a polarizationH , we obtain a ruled surface � W S ! B

with B a smooth proper curve, a morphism h W S ! Y obtained by deforming f , and at least
three sections of � with one †1 given by the marking t , and at least two other contact mark-
ings, write †2 and †3 with one given by the contact marking of maximal size. Since †1
is contractible, it has negative self-intersection. Since S is a ruled surface, †2 and †3 have
positive self-intersections. But the choice of maximal size implies that †2 �†3 D 0. This is
a contradiction, since the effective cone of S is two-dimensional.

Finally, the statement on the degree of f �.�KX / can be deduced from the following
calculation:

degf �.�KX / D degf �.�KY / D .�KY / � C ��Y � C � nC 1 ��Y � C:

Theorem 6.5. Let X D .X;�X / be a log smooth projective variety such that

(1) �KX is interior-positive,

(2) there exists a point x 2 U such that for any A1 or P1-curve f W C ! X through x, the

pullback f �TX is ample.

Then we have:

(a) If there is an A1-curve through x, then X D Pn and �X is a hyperplane.

(b) Otherwise, there is a P1-curve through x, and X D Pn with �X D ;.

We first observe the following:

Lemma 6.6. Notation and assumptions as in Theorem 6.5, let f W C ! Y be an A1-

or P1-curve through x as in Proposition 6.4. Then f is an immersion and

f �TY D O.2/˚ O.1/˚ � � � ˚ O.1/:

Proof. The natural inclusion TY ! TY induces the following exact sequence:

0 ! f �TY ! f �TY ! T ! 0;

where T is a torsion sheaf supported on the contact marking. Since f �TY is ample, the pull-
back f �TY is ample as well. By Proposition 6.4, we have deg f �TY � nC 1. Since f �TY is
ample, the splitting type of f �TY then follows. The immersion follows from [34, Chapter IV,
Section 2.11].
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Proof of Theorem 6.5. Take the stable log map f W C ! Y as in Lemma 6.6. If f is
a very free minimal P1-curve through x, then any deformation of f can not break or com-
pletely fallen into the boundary, as it is minimal, and through a point in U . Thus any deforma-
tion of f does not meet�Y . Using Lemma 6.6 and the identical argument as in [34, Chapter V,
Section 3.7], we deduce that Y Š Pn. Then �Y hence �X is empty as any effective divisor
in Pn is ample. This implies that there is an étale birational map Pn ! X , from which we
deduce that X D Pn.

Assume that f W C ! Y is an A1-curve, and is minimal as in Lemma 6.6. The ample-
ness of f �TY Š .r ı f /�TX implies that degf �.�KY / � n, hence degf �.�KY / D n by
Proposition 6.4. We then calculate

�Y � ŒC � D .�KY / � C � .�KY / � C D nC 1 � n D 1:

This implies that f intersects�Y transversally at the unique contact marking. We also observe
that any deformation of f can not break or completely lie on the boundary. Thus, deforming
f is the same as deforming the underlying stable maps, i.e. they are parameterized by the
same moduli space. The same argument as in [34, Chapter V, Section 3.7] implies Y Š Pn.
The degree consideration implies that �Y is a hyperplane in Pn. Thus r has to be an isomor-
phism.
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