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STRONG APPROXIMATION
OVER FUNCTION FIELDS

QILE CHEN AND YI ZHU

Abstract

By studying A1-curves on varieties, we propose a geometric approach to
the strong approximation problem over function fields of complex curves.
We prove that strong approximation holds for smooth, low degree affine
complete intersections with smooth boundary at infinity.

1. Introduction

Given a variety X over a number field, the existence of rational points (in-

tegral points) and their distributions (Hasse’s principle, weak approximation,

and strong approximation) are extensively studied by number theorists. In

general, these problems are very difficult and lacking of complete solutions.

Those questions have been studied over function fields over the past fifteen

years. Let X be a smooth projective variety defined over the function field K

of a complex algebraic curve. If X is rationally connected [Cam92,KMM92],

then X admits rational points [GHS03,dJS03]. If X is rationally simply con-

nected, weak approximation holds for X; see [dJS06,Has10] for the definitions

and results. Furthermore, it is expected that weak approximation holds for

rationally connected varieties [HT06].

While the results above focus on the projective case, number theorists study

arithmetics of open varieties such as linear algebraic groups and affine hyper-

surfaces as well [PR94,Sko01,HT01,CTX09]. The study of integral points over

geometric function fields was initiated by Hassett-Tschinkel [HT08]. They

proved that for certain log Fano varieties, integral points are dense.

This paper is an attempt to build a parallel theory of integral points on open

varieties over K. The natural candidates that satisfy strong approximation

are log rationally connected varieties, that is, varieties on which a general

Received May 19, 2016, and, in revised form, March 21, 2017. The first author was
supported by NSF grant DMS-1403271 and DMS-1560830.

c©2018 University Press, Inc.

703

http://www.ams.org/jag/
http://dx.doi.org/10.1090/jag/706


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

704 QILE CHEN AND YI ZHU

pair of points can be connected by an A1-curve. Examples of log rationally

connected varieties include:

• interior of smooth log Fano complete intersection pairs [CZ14b];

• semisimple linear algebraic groups, more generally, sober spherical

homogeneous spaces of type (b) [CZ14a];

• smooth surfaces with no global higher tensor of log 1-forms [Zhu16].

In [CZ16a], we applied log rational connectedness to give another proof of

Hassett-Tschinkel’s theorem [HT08] and proposed the following question.

Question 1.1 ([CZ16a]). Does strong approximation hold for log ratio-

nally connected varieties over K?

Before this work, affine spaces were the only examples that satisfied strong

approximation [Ros02, Theorem 6.13]. In this paper, we affirm strong ap-

proximation for smooth, low degree affine complete intersections.

Notation 1.2. Let X be a smooth complete intersection in Pn (n ≥ 2) of

type (d1, · · · , dc) with di ≥ 2. Let D ⊂ X be a smooth hypersurface section

of degree k. We call the pair X := (X,D) a smooth complete intersection pair

of type (d1, · · · , dc; k). We denote by X the log scheme associated to the pair

(X,D).

Theorem 1.3. Strong approximation holds for the interior of any smooth

complete intersection pair of type (d1, · · · , dc; 1) in Pn
K with

c∑
i=1

d2i ≤ n.

Corollary 1.4. Hasse’s priniciple holds for integral points of the interior

of any smooth complete intersection pair of type (d1, · · · , dc; k) in Pn
K with

c∑
i=1

d2i + k2 ≤ n+ 1.

Theorem 1.3 and Corollary 1.4 give a satisfactory answer on the existence

and density of integral (rational) points for low degree affine hypersurfaces

defined over C[t]. Such results are new even for affine quadric hypersurfaces

with dimension at least three. In the number theoretic set up, the analogues

for affine quadrics are already nontrivial theorems.

Our results on strong approximation provide an interesting geometric ap-

plication.

Corollary 1.5. Let (X,D) be a smooth complete intersection pair of type

(d1, · · · , dc; k) in P
n
C
with

∑c
i=1 d

2
i +k2 ≤ n+1. Then there exists an A

1-curve

passing through any m-tuple of points on X �D.
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It is known that over C, there exist rational curves on a smooth rationally

connected variety through any finite number of points. But the analogues

problem for log rationally connected varieties is widely open.

1.1. Idea of the proof. In this paper, we introduce the notion of A1-

simple-connectedness using the stable log map compactification. This is a key

to our approach for the strong approximation conjecture overK. Our proposal

is parallel to the approach of de Jong-Starr [dJS06] and Hassett [Has10] for

weak approximation of rationally simply connected varieties.

Theorem 1.6. Let K be the function field of a smooth, irreducible complex

algebraic curve. Let X = (X,D) be a log smooth projective variety over K.

Assume the following hold:

(1) X satisfies weak approximation over K.

(2) There exists a curve class β and a geometrically irreducible component

M of the moduli space A2(X, β) of two pointed A1-curves defined over

K such that

• a general point of M parametrizes a smoothly embedded A
1-curve.

• The 2-pointed evaluation morphism

ev : M → X ×X

is dominant with rationally connected geometric generic fiber.

Then strong approximation holds for the interior X\D over K.

We refer to Section 1.3 for the notation and terminologies of the above

theorem. The formulation of strong approximation is defined in Section 2.

If we call Condition (2) above A
1-simple-connectedness (with respect to the

curve class β), the theorem above states that strong approximation holds for

A1-simply connected K-varieties if weak approximation holds. Furthermore,

A1-simple-connectedness is a geometric condition, and only depends on the

interior.

Affine spaces are the first class of examples of A1-simply connected varieties

because any pair of points can be joined by a unique affine line.

Proposition 1.7. Affine spaces are A1-simply connected. Thus strong

approximation holds for affine spaces over K. �
By studying the geometry of A1-conics on complete intersection, we give

a bound for low degree smooth complete intersection pairs to be A
1-simply

connected.

Theorem 1.8. Let X := (X,D) be a smooth complete intersection pair of

type (d1, · · · , dc; 1) in Pn. Assume that X�D is not the affine space. Denote

by α the line class on X. Then the general fiber of the evaluation morphism

defined in (1.3.1),

ev : A2(X, 2α) → X ×X,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

706 QILE CHEN AND YI ZHU

is a smooth complete intersection in Pn of type

(1, 1, · · · , d1 − 1, d1 − 1, d1, · · · , 1, 1, · · · , dc − 1, dc − 1, dc).

In particular, a general fiber is rationally connected if
∑c

i=1 d
2
i ≤ n.

Proof of Theorem 1.3. Combining the hypothesis with the works of [dJS06,

Has10], we know that weak approximation holds for X. Now Theorem 1.3

follows from Theorems 1.6 and 1.8. �
Remark 1.9. The authors thank the anonymous referee, who pointed out

to us that there might be an approach to the proof of Theorem 1.8 by taking

the closures of the loci of A1-lines and A1-conics in the stacks of usual stable

maps. Then similar to the strategy of this paper, one needs to analyze the

geometry of the compactified loci of A1-curves. However, such compactifica-

tions seem to be less convenient to study for (1) the deformation theory for

the degenerated A1-curves in such compactification has not been well studied

to the knowledge of the authors; and (2) when the boundary D of the tar-

get has higher degree or multiple components, such compactification will be

rather singular, not even normal in general. The authors haven’t worked out

the details in this setting as it might require some foundational work beyond

the current scope of this paper. On the other hand, the logarithmic approach

provides a better control of the boundary; see [CZ16b] for an example in case

of boundaries with multi-components. The authors’ further study of integral

points and the strong approximation problem along the logarithmic approach

in more general settings is currently a work in progress.

1.2. Organization of the paper. In Section 2, we state the geometric

formulation of strong approximation and prove Theorem 1.6. In Sections 3

and 4, we analyze the moduli space of A1-lines and A
1-conics, and conclude

the proof of Theorem 1.3. We prove Corollaries 1.4 and 1.5 in Section 5.

1.3. Notation and terminology. Capital letters such as X, Y , Z, and

C, etc., are reserved for log schemes with the corresponding underlying

schemes denoted by X, Y , Z, and C. For any log scheme X, denote by

X◦ ⊂ X the open locus with the trivial log structure.

An A
1-map is a genus zero stable log map with precisely one marked point

with a nontrivial contact order. An A
1-curve is an A

1-map with an irreducible

source curve, whose image has nontrivial intersection with the open locus of

the target with the trivial log structure. We call an A1-curve an A1-line or

an A1-conic if the curve class of the A1-curve is the class of a line or a conic

respectively.

Recall that the stack of stable log maps, viewed as a category fibered over

the category of schemes, parameterizes minimal stable log maps. The defini-

tion of minimality can be found in [Che14, Definition 3.5.1] in the rank one
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case that is needed for this paper, and more generally in [AC14, Section 4]

and [GS13, Section 1.5].

For any log scheme Z, any curve class β on Z, and any positive integer e,

denote by Am(Z, eβ) the moduli stack of A1-maps to Z with curve class eβ,

and m markings with the trivial contact order. Then Am(Z, eβ) is a log stack

with the canonical log structure. Denote by Am(Z, eβ) the underlying stack

obtained by removing the log structure of Am(Z, eβ). We have the evaluation

morphism induced by the m-markings with the trivial contact order

(1.3.1) ev : Am(Z, eβ) → X × · · · ×X

where the right hand side is m-copies of X.

Let Rm(Z, eβ) be the moduli space of m-pointed, genus zero stable maps

to Z with curve class eβ.

We refer to [Kat89] for the basics of logarithmic geometry, and [Kat00,

Ols07] for the canonical log structures on curves. For the detailed development

of stable log maps, the reader should consult [Che14,AC14,GS13].

2. Strong approximation

2.1. The arithmetic formulation. We first recall the adelic formulation

of strong (weak) approximation over function fields of curves; see [Has10].

Let B a smooth irreducible projective curve over C with function field

F = C(B). For each place v ∈ B, denote by Kv the completion of K at v.

Let S be a nonempty finite set of places of K, oK,S the ring of S-integers.

Denote by AK,S :=
∏′

v∈B�{S} Kv the ring of adeles over all places outside

S, where the product is the restricted product, i.e. all but finite number of

factors are in ov. The ring AK,S has two natural topologies: the first one is

the product topology, and the second one is the adelic topology, with a basis

of open sets given by
∏

v/∈S Rv where Rv = ov for all but finitely many v.

Let U be a geometrically integral algebraic variety over K. Denote by

U(K) the set of K-rational points, and U(AK,S) be the restricted product∏′
v/∈S U(Kv). Thus, the set of adelic points U(AK,S) admits the product

topology and adelic topology locally inherited from that of adelic affine spaces.

Definition 2.1. We say that strong approximation (respectively, weak ap-

proximation) holds for U if for any S �= ∅, the inclusion

U(K) → U(AK,S)

is dense in the adelic topology (respectively, product topology). To be more

precise, this is equivalent to saying that for any finite set T of places containing
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S, any integral model U over oK,S of U , and any open set Wv ⊂ U(Kv) under

the adelic topology for each place v ∈ T\S, the image of U(K) via the diagonal

map in

(2.1.1)
∏

v∈T\S
Wv ×

∏
v/∈T

U(ov) (respectively,
∏

v∈T\S
Wv ×

∏
v/∈T

U(Kv))

is not empty. We say that Hasse’s principle holds for integral points of U if

for any S �= ∅ and any model U as above,∏
v/∈S

U(ov) �= ∅ implies U(oS) �= ∅.

The above definition does not depend on the choice of model. Strong

approximation implies weak approximation. The converse also holds when U

is proper over K.

2.2. The geometric formulation. The geometric setting of weak ap-

proximation has been formulated and studied in [HT06]. We next translate

Definition 2.1 into the geometric setting. To apply logarithmic geometry, we

would like to replace the open variety U by a proper log smooth variety X

with the log trivial part U .

Definition 2.2. Let X be a smooth, proper, and log smooth variety over

K. Denote by U = X◦ its log trivial open subset. A proper model of X is a

family of log schemes:

π : X → B

such that

(1) B is a smooth projective curve with the trivial log structure;

(2) π : X → B is proper flat over B;

(3) the generic fiber of π is X.

We say such a model is regular if X is a smooth variety. This can always be

achieved via resolution of singularities.

Proposition 2.3. Let U be the log trivial open subset of a proper, smooth,

log smooth variety X defined over K. Then strong approximation holds for U

away from S is equivalent to the following statement:

Given any proper regular model of X as in Definition 2.2, any finite set of

places T = S ∪ {b1, · · · , bk} such that π is smooth and log smooth over oK,T ,

any smooth points xi in X sm
bi

for i = 1, · · · , k can be realized by a section of

π which is integral (i.e., away from the boundary) over oK,T .

Proof. With the same notation as in (2.1), since U(ov) is open in X(Kv)

for any v /∈ T , we may enlarge the set T such that the integral model U can

be embedded into a regular proper model X of X over oK,T and X is smooth
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and log smooth over oK,T . The rest is done by the iterated blow-ups of the

jet datum [HT06, 2.3], [Has10, 1.5]. �
2.3. Proof of Theorem 1.6.

Step 1. To prove the theorem, it suffices to verify the statement in Propo-

sition 2.3. Let V ⊂ X × X denote the open subset over which ev has ge-

ometrically irreducible, and rationally connected fibers whose general points

parametrize A1-curves.

Step 2. By assumption, we know that X is A1-connected. In particular,

X is rationally connected. By [GHS03,KMM92], the rational points of X over

K are dense. After enlarging T , there exists a rational section

s : B → X

such that

• s is integral over oK,T ;

• the associated rational point, still denoted by s, is general in X.

Step 3. Since weak approximation holds over K, we may choose a general

section

t : B → X
such that

• t(bi) = xi for i = 1, · · · , k;
• the associated rational point, still denoted by t, is general in X;

• we may assume that the point (s, t) lies in the open subset V ⊂ X×X.

Step 4. The fiber ev−1(s, t) is a geometrically irreducible rationally con-

nected variety defined over K whose general points parametrize A1-curves.

By [GHS03,KMM92], there exists a rational point of ev−1(s, t) parametrizing

a smooth embedded A
1-curve. This rational point gives a generic A

1-ruled

surface in X , denoted by H → B. By construction, the surface H contains:

• the section s integral over oK,T , and

• the section t. In particular, H admits a local section over bi passing

through xi for all i.

Let T ′ be the place of bad reductions of H outside T . Since strong ap-

proximation holds for A1
K away from S [Ros02, Theorem 6.13], we can find a

section σ : B → H → X such that

• σ(bi) = xi for all i;

• σ(b) = s(b) for all b ∈ T ′;

• σ is integral away from T ∪ T ′.

In particular, σ is integral away from T and σ(bi) = xi for all i. �
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3. A1-lines through a general point

3.1. A deformation result.

Proposition 3.1. Let X be a projective log smooth variety. For any

curve class β ∈ H2(X) and a subscheme B ∈ X◦ with B either a closed

point or the empty set, there are finitely many sub-varieties {Y i} of X◦ such

that if f : (P1,∞) → X is an A1-curve with curve class β through B, and

f(P1
� {∞}) /∈ Y i, then f is free. In particular, an A

1-curve through B and

a general point of X◦ with curve class β is free.

Proof. Denote by

A◦
B(X, β) =

{
A◦

0(X, β), if B = ∅, or
ev−1(B), if B is a point,

where ev : A◦
1(X, β) → X is the evaluation morphism induced by the marking

with the trivial contact order.

Let Zi be the irreducible component of A◦
B(X, β) with the universal mor-

phism f◦
i : C◦

i := Ci � {∞} → X. Let

Y i =

{
f◦
i (C

◦
i ), if f◦

i is not dominant, and

X◦ � Ui, if f◦
i is dominant,

where U i ⊂ X◦ is an open and dense subset such that f◦ is smooth over U i,

and all closures are taken in X◦.

Consider an A1-curve f : (P1,∞) → X of curve class β with f(P1�{∞}) /∈
Y i for any i. Let Zj be the component containing f . By construction, the

universal morphism f◦
j is dominant, and f intersects U j . Same argument as

in [Kol96, Chapter II 3.10] implies that f is free. �
Corollary 3.2. Notation and assumptions as in Proposition 3.1, any A1-

curve passing through B and a very general point of X◦ is free.

Proof. This follows from Proposition 3.1 by taking into account all choices

of curve classes. �
3.2. A1-lines on smooth complete intersection pairs. Consider the

smooth complete intersection pair X = (X,D) as in Notation 1.2. In this

subsection, we study the evaluation morphism

ev : A1(X,α) → X.

Proposition 3.3.

(1) A general fiber of ev is smooth and projective.

(2) Every nonempty connected component of a general fiber is of expected

dimension n− d where d = d1 + · · ·+ dc + k.
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Proof. The first statement follows from Proposition 3.1. Since every A1-

map with line class in a general fiber is free, the dimension is calculated by

the Euler characteristic of the pullback of the log tangent bundle.

c1(TX).α+ dimX + 2− 3− dimX = n+ 1− d− 1 = n− d.

�
Next we would like to describe the general fiber of ev explicitly in equations.

Fix a general point x ∈ X◦. Let Lx be the fiber over x of the evaluation

morphism:

ev : A1(X,α) → X.

We consider the restriction of the boundary evaluation morphism on Lx:

b′ : Lx → D.

Proposition 3.4. If d = d1 + · · · + dc + k ≤ n, the morphism b′ is a

closed immersion, and the image of Lx is an irreducible, smooth complete

intersection in Pn of type

(1, · · · , d1, · · · , 1, · · · , dc, 1, · · · , k).

Let W = SpecR be any affine scheme. For any scheme Z, we denote by

ZW := Z ×W .

The scheme Lx is determined by its W -points:

Lx(W ) = {A1-lines in XW through xW }.

Assume for simplicity x = [1 : 0 : · · · : 0] ∈ X◦. Consider a W -point q = [x0 :

x1 : · · · : xn] ∈ D(W ). A W -line � joining xW and q can be expressed as

[t+ x0 : x1 : · · · : xn],

where t is the parameter of the line and xi ∈ R for each i.

Let Fi be the defining equation of X for i = 1, · · · , c with degFi = di.

Restricting them on the line equation of l, we have

(3.2.1) Fi(t+ x0, x1, · · · , xn) = Pi0 · tdi + Pi1 · tdi−1 + · · ·+ Pidi
,

where Pij ∈ R[x0, · · · , xn] is a homogeneous polynomial of degree j. The

condition x ∈ X implies that Pi0 = 0. The condition � ⊂ XW is equivalent to

the vanishing of Pi1, · · · , Pidi
for each i, which gives a complete intersection

of type

(1, 2, · · · , d1, · · · , 1, 2, · · · dc).
Similarly, let G be the defining equation of D. Restricting them on the line

equation of �, we have:

(3.2.2) G(t+ x0, x1, · · · , xn) = Q0 · tdi +Q1 · tdi−1 + · · ·+Qk,
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where Qj ∈ R[x0, · · · , xn] is a homogeneous polynomial of degree j. The point

xW lying outside DW implies that Q0 �= 0. Note that Qk is indeed G. The

condition being an A1-line is equivalent to the vanishing of the polynomials

Q1, · · · , Qk, i.e., a complete intersection of type

(1, · · · , k).

Now we define a complete interesection Z in Pn
W defined by the following

equations:

P11, · · · , P1d1
, · · · , Pc1, · · · , Pcdc

, Q1, · · · , Qk.

Since Qk = G, Z is automatically a closed subscheme of D.

To summarize, we proved the following.

Lemma 3.5. The image of the morphism

b′ : Lx → D

lies in Z.

Proof of Proposition 3.4. It suffices to prove that Lx is isomorphic to Z

under b′, i.e., every W -point of Z is the image of a unique W -point of Lx

under b′. This follows from the fact that any W -point of Z gives a W -family

of lines via the projection:

pr : Pn
W − {xW } → P

n−1
W ,

where the target is the Hilbert scheme of lines through xW . Furthermore,

such a family of lines meet the boundary exactly once, hence is a family of

A1-lines. �
Corollary 3.6. A general fiber of ev is a nonempty, irreducible, and

smooth complete intersection if X is log Fano, or equivalently, d ≤ n.

Proof. This follows from Propositions 3.3 and 3.4. �

4. Moduli of A1-conics through two general points

For the rest of this section, we work with the following assumption.

Assumption 4.1. Let X = (X,D) be a smooth complete intersection pair

in Pn
C
of type (d1, · · · , dc; 1) with di ≥ 2 for each i.

The goal of this section is to study general fibers of the 2-pointed evaluation

morphism

(4.0.1) ev : A2(X, 2α) → X ×X

given by the two marked points with the trivial contact order. The proof of

Theorem 1.8 will be concluded at the end of this section.
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For later use, denote by F (p,q) the fiber of (4.0.1), and F(p,q) the correspond-

ing log scheme with the minimal log structure pulled back from A2(X, 2α).

When there is no confusion of the pair of points (p, q), we will simply write F

and F , and omit the subscripts.

4.1. Smoothness of the moduli.

Lemma 4.2. For a general pair of points (p, q) ∈ X◦ ×X◦, let Δ be the

closed substack of F parametrizing reducible A1-conics. Then every geometric

point f in Δ satisfies the following properties:

(1) The underlying curve C over S = SpecC consists of three irreducible

genus zero components Zi for i = 0, 1, 2, with precisely two nodes zi
joining Z0 and Zi for i = 1, 2.

(2) Each component Zi contains a marking σi with the trivial contact

order for i = 1, 2.

(3) Z0 has three special points given by the contact marking and two

nodes.

(4) f contracts the component Z0 to a point xf := f(Z0) ∈ D.

(5) The restriction f |Zi
is an embedding of two free A1-lines for i = 1, 2.

(6) The characteristic sheaf MF |Δ is a locally constant sheaf with fiber

N.

(7) Let C� → S� be the canonical log structure on C → S; see [Kat00,

Ols07]. Then the canonical morphism MS� → MS is fiberwise given

by N2 → N, (a, b) �→ a+ b.

Proof. By Assumption 4.1, the line through a general pair of points p, q in

X is not contained in X. Therefore, the boundary Δ parameterizes stable log

maps with property (1) – (4). Statement (5) of f |Zi
follows from Proposition

3.1 and the general choice of p, q.

Property (6) and (7) follow from the definition of minimality as in [Che14,

Construction 3.3.3], [AC14, Section 4], and [GS13, Construction 1.16]. In-

deed, the minimality is defined fiberwise over each geometric point. Thus

to calculate the fiber of the characteristic sheaf MF |Δ, it suffices to study

the combinatorial structure of each geometric fiber f . Following the no-

tation in [Che14, Definition 3.3.2] and [AC14, Section 4.1.1], the marked

graph of f , denoted by G, has three vertices vi corresponding to the three

components Zi for i = 0, 1, 2, and two edges lj corresponding to the two

nodes zj , oriented from vj to v0 with contact order 1 for j = 1, 2. A di-

rect calculation following [Che14, Construction 3.3.3] shows that MF |[f ] = N.

Furthermore, by the edge equation [Che14, (3.3.2)], the canonical morphism

MS�
∼= N

2 → MS = MF |[f ] = N is given by (a, b) �→ a+ b. �
Lemma 4.3. For a general pair of points p, q, the fiber F is a log smooth

scheme with the smooth boundary divisor Δ .
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Proof. We may assume that F is nonempty. Let U ⊂ A2(X, 2α) be the

open sub-stack parameterizing free A1-maps with the curve class 2α. Thus,

the log stack U is log smooth. Recall that a log smooth scheme with a locally

free log structure has a smooth underlying scheme. This follows directly from

[Kat89, Theorem (3.5)]. Lemma 4.2(6) implies that U has the locally free log

structure along the boundary divisor Δ, hence U is smooth along Δ. Since

p, q are general, any A1-map in F is either an A1-conic or a reducible A1-map

described in Lemma 4.2. By Proposition 3.1, any A1-conic through p and q

is free. Combining with Lemma 4.2(4) and (5), it implies that F ⊂ U . In

particular, we have F = ev−1|U (p, q). Thus, the smoothness of U implies

that the morphism ev|U : U → X ×X is smooth along the boundary divisor

parametrizing reducible A
1-conics. By generic smoothness, we conclude that

F is smooth. In particular, the pair F = (F ,Δ) is log smooth. �
4.2. A lifting property in the transversal case. We pause here to

study the lifting of a special type of usual stable maps to stable log maps.

Here is a slightly general result that fits our need.

Let Z be a log smooth variety over C with a smooth boundary divisor D.

This means that the log structure MZ on Z is defined by

MZ(V ) := {h ∈ Γ(OV ) | h|V�D ∈ O∗
V�D},

where V ⊂ Z is an arbitrary open set in Zariski topology.

Proposition 4.4. Consider a family of genus zero usual stable maps f :

C → Z with two markings σ1 and σ2 over an arbitrary base scheme S such

that:

(1) The family C → S is obtained by gluing two families of smooth ratio-

nal curves C1 → S and C2 → S along the markings ∞1 ⊂ C1 and

∞2 ⊂ C2.

(2) Each Ci → S has two markings σi and ∞i for i = 1, 2.

(3) The restriction f |Ci
is a family of A1-curves over S intersecting D

transversally along ∞i for i = 1, 2.

Then there exists up to a unique isomorphism, a unique family of genus zero

minimal stable log maps f̃ : C̃/S → Z such that:

(i) The underlying scheme of S is S.

(ii) The family of stable log maps has one contact marking ∞, and two

other markings σ1, σ2 with the trivial contact order.

(iii) The family of usual stable maps obtained by removing log structures

on f̃ , forgetting the contact marking ∞, and then stabilizing, is f .

Remark 4.5. One could modify the above statement by assuming that

C1 → S and C2 → S are two families of smooth irreducible curves of genus

g1 ≥ 0 and g2 ≥ 0 respectively. Then the same proof as below would imply
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the existence of a unique family of minimal stable log maps f̃ of genus g1+ g2
with the properties (i), (ii), and (iii) as in Proposition 4.4. Since this general

result is not needed in this paper, we leave the verification to the readers who

are interested.

We divide the proof into the following two lemmas. We first prove the local

existence.

Lemma 4.6. With notation as in Proposition 4.4, the existence in Propo-

sition 4.4 holds locally over S.

Proof. Our construction here is similar to the case of [CZ16a, Proposition

2.2] but for a family of maps. We take a family of smooth rational curves

C0 → S with three markings ∞, ∞′
1, and ∞′

2. Such a family is necessarily

trivial, and we thus have C0
∼= P1 × S. We have a family of nodal rational

curves

C ′ → S

obtained by gluing Ci with C0 via the identification of the markings

∞i
∼= ∞′

i. for i = 1, 2.

Now the underlying stable map f over S lifts uniquely to the underlying stable

map

(4.2.1) f̃ : C′ → Z

over S by contracting the component C0.

Consider the projectivized normal bundle P := PD(ND/Z ⊕OD) with two

boundary divisors D− and D+ corresponding to the normal bundles N∨
D/Z

and ND/Z respectively. Here ND/Z is the normal bundle of D in Z. Consider

the expansion Z[1] obtained by gluing Z and P via the identification D ∼= D−.

We next want to lift f̃ to a stable map f̃
′
: C′ → Z[1] such that

(1) f̃
′|Ci

= f̃
Ci

for i = 1, 2,

(2) the composition C0 → P → D is compatible with f̃ |C0
,

(3) f̃
′|C0

: C0 → P is a family of a relative stable map tangent to D+

only along ∞ with multiplicity 2 and intersecting D− transversally

only along ∞1 and ∞2.

Replacing S by a Zariski open subset, we may assume that the pullback

PS = S ×D P along ∞i → D is a trivial family of rational curves over S.

Note also that the required morphism f̃
′|C0

factors through PS with the cor-

responding tangency along D−,S := S ×D D− and D+,S := S ×D D+. Since

C0
∼= P1 ×S → S is also a trivial family, to construct f̃

′
C0

, it suffices to select

a meromorphic section on P
1 with two simple zeros along ∞′

1 and ∞′
2, and
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a pole of order 2 along ∞. Such a meromorphic section clearly exists. This

yields the usual stable map f̃
′
with the desired properties.

Finally, by [Kim09] (see also the construction of [CZ16a, Proposition 2.2]),

since the usual stable map f̃
′
intersects the boundary transversally along ∞i,

it lifts to a unique log stable map f̃ ′ : C ′ → Z[1] over a log scheme S in the

sense of [Kim09]. Here Z[1] is the log scheme with the underlying structure

Z[1], and the canonical log structure as in [Ols03], and S has underlying

structure S. Since there is a natural projection of log schemes Z[1] → Z,

composition of this projection with f̃ ′ gives us the stable log map f̃ as needed.

�

Lemma 4.7. The uniqueness in Proposition 4.4 holds.

Proof. It suffices to show the uniqueness locally. Shrinking S, we may

again assume base scheme S = SpecR is affine. It suffices to verify that the

lift constructed in Lemma 4.6 is unique.

Assume that we have two different liftings f̃1 : C̃ ′
1/S1 → Z and f̃2 :

C̃ ′
2/S2 → Z. We first notice that except for the freeness in (5), all other

statements in Lemma 4.2 apply to both f̃1 and f̃2. In particular, the two lift-

ings f̃1 and f̃2 have the same underlying stable map (4.2.1) over S constructed

in the proof of Lemma 4.6.

We first compare the two stable log maps over the contracted component

C0. Since the underlying morphism is uniquely determined by f , it remains

to study the morphisms on the level of log structures. Shrinking S, we may

assume that f̃
∗MZ |C0

is generated by a global section δ. By Lemma 4.2(6)

and further shrinking S, we may assume that MSi
is generated by a global

section ei for i = 1, 2. By choosing the generators appropriately, we may

assume that the morphism f̃ �
i |C0

: f̃∗
i MZ |C0

→ MC̃′
i
|C0

on the level of log

structures is given by the following:

(4.2.2) f̃ �
i (δ) = ei + log σ, for i = 1, 2,

where σ is a meromorphic function on C0 with only poles along ∞′
1 and ∞′

2,

and second order zero along ∞. Since f |Ci
intersects D transversally, the

contact order at both nodes are equal to 1 [Che14, Definition 3.2.6], hence σ

has only simple poles along ∞′
1 and ∞′

2.

We now focus on the node ∞i of C̃
′
for i = 1, 2. Let MS� and MC̃�

be the canonical log structure on S and C̃ associated to the family C̃ → S.

Shrinking S again, we assume MS� is generated by global sections a1 and

a2 corresponding to smoothing nodes ∞1 and ∞2 respectively. By Lemma

4.2(7), the log curves C̃1 → S1 and C̃2 → S2 are defined by the following
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morphisms of log structures respectively:

(4.2.3) MS� → MS1
, ai �→ e1 + log ui, for i = 1, 2,

and

(4.2.4) MS� → MS2
, ai �→ e2 + log vi, for i = 1, 2,

where ui, vi ∈ R∗ are some invertible elements.

Since f̃ |Ci
is an embedding of a family of A1-curves, the two sections f̃ �

1(δ)

and f̃ �
2(δ) are identified with the image of f̃

∗
(exp(δ)), where exp(δ) ∈ OC̃

′ is

the image of δ. This in particular means that we have a canonical identification

(4.2.5) f̃ �
1(δ) = f̃ �

2(δ)

along the node ∞i for i = 1, 2. A calculation combining (4.2.5) with (4.2.2),

(4.2.3) and (4.2.4) implies that

ui = vi.

We thus obtain an isomorphism of log structures MS1
→ MS2

induced by

the correspondence e1 �→ e2 which fits in a commutative diagram

MS�

���
��

��
��

�

����
��
��
��

MS1
�� MS2

with the two skew arrows given by (4.2.3) and (4.2.3). This commutative

diagram induces an isomorphism of the two log curves C̃ ′
1 → S1 and C̃ ′

2 → S2.

In view of (4.2.2), this further induces an isomorphism of the two stable

log maps f̃1 ∼= f̃2. Such an isomorphism is canonical from the discussion

above. �
To prove Proposition 4.4, we may first construct the log lifts locally using

Lemma 4.6, then glue the local construction together using Lemma 4.7. This

proves the existence of lifting. The uniqueness follows from Lemma 4.7. �
4.3. Forgetful morphism to moduli of usual stable maps. Now con-

sider the moduli space of usual stable maps with two markings R2(X, 2α).

Consider the 2-evaluation morphism

(4.3.1) ev : R2(X, 2α) → X ×X

induced by the two markings. Given a pair of points (p, q) ∈ X×X, denote by

F ′
(p,q) the fiber of (4.3.1) over (p, q). When there is no danger of confusion, we

will write F ′ instead of F ′
(p,q). Denote by Δ′ ⊂ F ′ the locus parameterizing

maps with reducible domain curves. Recall that
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Lemma 4.8 ([dJS06, Lemma 5.1]). For a general choice of (p, q), the

scheme F ′ is smooth with a smooth divisor Δ′.

We then consider the forgetful morphism

Φ : A2(X, 2α) → R2(X, 2α)

obtained by sending a stable log map to its underlying stable map, forgetting

the marking ∞ with nontrivial contact order, then stabilizing. This induces

a forgetful morphism of the fibers

(4.3.2) φ : F → F ′.

Proposition 4.9. Fixing a general choice of (p, q), the forgetful morphism

φ is an embedding of a closed sub-scheme. Furthermore, it induces an embed-

ding of closed sub-scheme Δ → Δ′.

Proof. Note that if a usual stable map intersects the boundary of X at a

single smooth point of the source curve, then it lifts to an A
1-map in a unique

way. Thus, the morphism F �Δ → F ′
�Δ′ is an embedding. It remains to

consider around the locus of stable log maps with reducible domain curves.

By Assumption 4.1 and Proposition 4.4, the forgetful morphism φ is injec-

tive on the level of closed points. Since by our assumptions both F and F ′

are smooth, it remains to verify the injectivity of the tangent map.

We fix a minimal stable log map f : C/S → X over a geometric point

S = SpecC ∈ F . It suffices to consider the case that C is reducible, and

denote by f ′ : C ′/S′ → X the image of f in F ′.

Consider the morphism between tangent spaces dφ[f ] : TF,[f ] → TF ′,[f ′].

Recall that for any smooth variety Y , the tangent bundle TY can be identified

with Hom(SpecC[ε]/(ε2), Y ). Now the injectivity of the tangent map follows

from applying the uniqueness of Proposition 4.4 to the trivial families over

S[ε] := SpecC[ε]/(ε2). �
4.4. Pullback of the boundary divisor. Denote by F ′ the log scheme

with underlying structure F ′, and log structure given by the canonical one

associated to the underlying curves; see [Kat00,Ols07]. We note that

Lemma 4.10. Fix a general choice of (p, q). The log smooth scheme F ′

has its log structure given by the boundary divisor Δ′.

Proof. Since the locus of F ′ with reducible domain curves form the smooth

divisor Δ′, to show that the log structure of F ′ is the same as the log struc-

ture given by the smooth divisor Δ′, it suffices to verify F ′ is log smooth.

Thus, it suffices to verify F ′ → M0,2 is log smooth, where M0,2 is the Artin

stack of genus zero pre-stable curves with two markings equipped with the

canonical log structure of curves. Since the morphism F ′ → M0,2 is strict,

the log smoothness is equivalent to the smoothness of the underlying maps
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F ′ → M0,2. This follows from the fact that F ′ parameterizes free usual stable

maps. �
Proposition 4.11. Fix a general choice of (p, q). There is a canonical

morphism of log schemes

(4.4.1) φ : F → F ′

compatible with φ in (4.3.2). Furthermore, φ∗[Δ′] = 2 · [Δ].

Proof. Now consider a family of minimal stable log maps f : C/S → X

corresponding to an S-point of F . Let f : C → X be the underlying stable

map over S, and f
1
: C1 → X be the image of f in F ′. Denote by C� → S�

and C�
1 → S�

1 the family of log curves over C → S and C1 → S with the

canonical log structure. We first notice that there is a canonical commutative

diagram of log schemes

(4.4.2) C� ��

��

C�
1

��

S� �� S�
1

To see this, we may shrink S and put two auxiliary markings on the non-

contracted component of C such that C → S is stable, and the components

contracted by f have no auxiliary markings.

Indeed, we have a commutative diagram of log stacks

(4.4.3) C0,5 ��

��

C0,4

��

M0,5
�� M0,4

where C0,n → M0,n is the universal family of genus zero stable curves with the

canonical log structure. Here the horizontal arrows are obtained by forgetting

a marking, and we view M0,5 as the universal curve over M0,4. Thus, the

diagram (4.4.2) is induced by first pulling back (4.4.3), then removing the

auxiliary markings.

Denote by F � the log scheme with underlying structure F , and log structure

given by the canonical one of the universal curves. The above argument

implies that (4.4.1) is given by the composition

F → F � → F ′

where the first arrow removes the minimal log structure and installs the canon-

ical log structure from the curves, and the second one is given by (4.4.2). This

is compatible with (4.3.2).
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Finally, to compute the pullback of Δ′, we consider the morphism F � → F ′.

Since the boundary Δ parameterizes curves with two nodes, we have MF � |Δ
is locally constant with fibers isomorphic to N2. In view of (4.4.3), fiberwise

over Δ, the morphism φ∗MF ′ → MF � is given by

N → N
2, 1 �→ (1, 1).

Combining with Lemma 4.2, we have the morphism φ∗MF ′ → MF over each

geometric point of Δ is given by

N → N, 1 �→ 2.

Since both F and F ′ are log smooth with smooth boundary divisors Δ and

Δ′ respectively, this implies that φ∗[Δ′] = 2 · [Δ]. �
4.5. Identifying the boundary Δ as a complete intersection. Fix-

ing a general (p, q), the geometry of the pair (F ′,Δ′) has been studied in

[Pan13]. Let us recall the basic construction. Let �pq be the line through p, q,

and let

ϕ : F ′ → P
n−2

be the morphism sending each conic to the plane containing it. We may

assume that Pn−2 is the intersection of the tangent hyperplanes TpX and

TqX. Consider the following diagram:

Δ

φ
Δ

��

�� F

φ

��

Δ′

ϕΔ
����

���
���

���
���

� �� F ′

ϕ

���
��

��
��

�

Pn−2

Proposition 4.12. The composition

(4.5.1) Δ
uΔ �� Δ′ ϕΔ

�� Pn−2 ⊂ Pn

identifies Δ as a complete intersection in Pn of type

(4.5.2) (1, 1, · · · , d1 − 1, d1 − 1, d1, · · · , 1, 1, · · · , dc − 1, dc − 1, dc, 1).

Proof. By [Pan13, Proposition 3.3], the morphism ϕ : F ′ → Pn−2 is a closed

embedding. It follows from Proposition 4.9 that the composition (4.5.1) is a

closed embedding.

The complete intersection type follows from the A1-line case, and Proposi-

tion 4.4. Indeed, we define the functor

R : SchC → Sets
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parametrizing families of reducible conics as in the hypothesis of Proposition

4.4. By Proposition 4.4, the functor R is isomorphic to the functor associated

to Δ under the map ϕ.

Since every T -point of R is uniquely determined by the node of the cor-

responding family of conics, R is isomorphic to the scheme parametrizing

the nodes of reducible conics. By Proposition 3.4, the locus of the boundary

marking of A1-lines through p (or q) is a complete intersection of type

(1, · · · , d1, · · · , 1, · · · , dc, 1).

After combining these polynomials, there is a redundancy (d1, · · · , dc, 1) say-
ing that r lies on D. Now the proposition follows. �

4.6. Degree of Δ′. Let M ⊂ Hilb2t+1(Pn) be the moduli space of conics

in Pn passing through p, q. Let Pn−2 be any projective subspace in Pn which

does not intersect �pq. We have a canonical morphism

h : M → P
n−2

which maps a conic to the plane it expands. It follows that M is a P3-bundle

over Pn−2, as the conics need to pass through two general points p, q. Let κ

be the relative O(1)-bundle of h corresponding to conics containing lpq.

Lemma 4.13. Let M0 be the open subset of M parameterizing conics which

do not contain the line �pq. Let Δ(M0) ⊂ M0 be the closed subset of reducible

conics. Let Δ(M) be the closure of Δ(M0) in M . Then we have the following:

(1) M0 is an A
3-bundle over P

n−2.

(2) Δ(M) is a smooth quadric surface bundle over P
n−2.

(3) Δ(M) is linearly equivalent to 2κ + 2h∗(OPn−2(1)). In particular,

Δ(M0) as a divisor in M0 is linearly equivalent to 2h∗(OPn−2(1)).

Proof. The first two statements follow from computation of plane conics.

Indeed, fix a plane in P
n containing p, q. Let p = [0 : 1 : 0] and q = [0 : 0 : 1].

A plane conic through p and q is of the form

a1x
2 + a2xy + a3xz + a4yz = 0.

It is reducible if and only if either a4 = 0 or a1a4 = a2a3. The first case cor-

responds to the locus parameterizing conics containing �pq, while the second

case does not. This proves statements (1) and (2).

From the above calculation, the divisor Δ(M) is linearly equivalent to

2κ + c · h∗(OPn−2(1)) for some coefficient c. To determine c, we construct

a testing curve, and check its intersection number with Δ(M) as follows.

We pick a general line L on Pn−2 and a smooth quadric hypersurface Q in

P
n containing p, q but not �pq. For any point t on L, the plane Hpqt

∼= P
2

spanned by the three points p, q, and t intersects Q at a conic Ct through
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p, q. Furthermore, P := {Ct} is a pencil of conics lying on the quadric surface

which is the intersection of Q and the span of �pq and L. Therefore, there are

two reducible conics in this pencil.

Since Q does not contain �pq, the pencil P lies in M0. In particular,

P.κ = 0. On the other hand, we have P.h∗(OPn−2(1)) = 1 by projection

formula. Hence we have P.Δ(M) = k.

To finish the proof, it suffices to show that P and Δ(M) intersect transver-

sally. Let Ct0 be a singular fiber of P . Since the pencil {Ct} gives a smoothing

of its singular fibers with the smooth total space, the first order deformation

of P at Ct0 lies outside the tangent space of Δ(M). �
Proposition 4.14. The smooth divisor Δ′ ⊂ F ′ is cut out by a homoge-

neous polynomial of degree two.

Proof. This is proved in [Pan13, Proposition 5.14]. Here we present a

simple proof. Consider the commutative diagram

Δ′

��

�� F ′

��

ϕ

���
��

��
��

�

Δ(M0) �� M0
h �� P

n−2

where the left square is Cartesian. Since Δ(M0) = h∗(OPn−2(2)), so is Δ′. �
4.7. Proof of Theorem 1.8.

Proposition 4.15. The smooth divisor Δ ⊂ F is cut out by a linear form

in Pn−2.

Proof. This follows from Propositions 4.11 and 4.14. �
Proof of Theorem 1.8. By [Pan13, Proposition 3.3], Propositions 4.12 and

4.15, we have:

• F ⊂ Pn−2 ⊂ Pn is a smooth projective variety.

• Δ = W ⊂ Pn−2 ⊂ Pn is a complete intersection of type

(1, 1, · · · , d1 − 1, d1 − 1, d1, · · · , 1, 1, · · · , dc − 1, dc − 1, dc, 1).

• Δ is cut out by a linear form on F .

Now the theorem follows from [Pan13, Proposition 6.1]. �

5. Proof of Theorem 1.3 and its corollaries

Proof of Theorem 1.3. Since affine spaces satisfy strong approximation

[Ros02, Theorem 6.13], it remains to prove under Assumption 4.1. By Theo-

rem 1.8 and the hypothesis on the degree, the general fiber of the evaluation
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morphism

ev : A2(X, 2α) → X ×X

is a smooth Fano complete intersection. Therefore, the general fiber is ra-

tionally connected by [Cam92,KMM92]. On the other hand, we know that

weak approximation holds for X [dJS06, Has10]. Now the theorem follows

from Theorem 1.6. �
Proof of Corollary 1.4. For any smooth complete intersection pair X =

(X,D) in Pn with coordinate [x0 : · · · : xn], we assume that

X = {F1 = F2 = · · · = Fc = 0}

where degFi = di and the boundary D = {G = 0} where degG = k. The

universal cover of X � D can be constructed in Pn+1 with the coordinate

[x0 : · · · : xn : y] by taking the complete intersection

(5.0.1) Y = {F1 = · · · = Fc = yk −G = 0}

with the boundary divisor

(5.0.2) E = {y = 0}.

We check that (Y ,E) is a smooth complete intersection pair in P
n+1 of type

(d1, · · · , dc, k; 1). Furthermore the natural projection to Pn defined by y = 0

gives a cyclic branched cover of degree k over X. This yields the universal

cover Y �E → X �D. Now the corollary follows from strong approximation

on Y � E by Theorem 1.3. �
Proof of Corollary 1.5. Let Y = (Y ,E) be the universal cover constructed

in (5.0.1) and (5.0.2). For each given point xi ∈ X◦, i = 1, · · · ,m, we may

choose a lift of yi ∈ Y ◦. Since strong approximation holds for the constant

family π : Y × P
1 → P

1 away from S = {∞} by Corollary 1.4, there exists an

integral section curve C passing through (y1, t1), · · · , (ym, tm), where ti’s are

distinct points on P1 − {∞}. The projection p1(C) gives an A1-curve on Y

passing through y1, · · · , ym. Composing it with the map from Y to X gives

the desired A1-curve. �
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