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Abstract We generalize the results of Clemens, Ein, and Voisin regarding rational
curves and zero cycles on generic projective complete intersections to the logarithmic
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1 Introduction

In this paper, we work with varieties over the complex numbers. First we introduce
the notion of smooth complete intersection pairs.

Definition 1.1 Let X be a complete intersection inPn of type (d1, · · · , dc). Let D ⊂ X
be a hypersurface section of degree k. We call the pair (X, D) a smooth complete
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intersection pair of type (d1, · · · , dc; k) if both X and D are smooth. We define the
total degree d of the pair (X, D) by

d = d1 + · · · + dc + k.

When k = 0, the boundary is empty and we simply denote (X, D) by X .

The existence of rational curves, algebraic hyperbolicity and rational equivalence
of zero cycles on generic complete intersection of general type has been studied by
Clemens [3], Ein [6,7], and Voisin [11–14].

Theorem 1.2 [Clemens, Ein, Voisin] Let X be a generic complete intersection in Pn

of type (d1, · · · , dc).

(1) If d ≥ 2n − c, X has no rational curves;
(2) If d ≥ 2n − c + 1, X is algebraically hyperbolic;
(3) If d ≥ 2n − c + 2, no two points of X are rationally equivalent.

The bounds above are not optimal. Voisin [13,14] further improved the bound (1)
to d ≥ 2n − 2 in case of hypersurfaces, which is optimal because hypersurfaces of
degree ≤ 2n − 3 always admit lines. Recently, Riedl and Yang further proved that X
contains lines but no other rational curves if (3n + 1)/2 ≤ d ≤ 2n − 3 [10].

In this paper, we generalize Theorem 1.2 to smooth complete intersection pairs,
where we study A

1-curves and A
1-equivalence of zero cycles instead. See Theorems

1.3, 1.6 and Corollary 1.5 below. They specialize to Theorem 1.2 when the boundary
is empty.

1.1 A
1-curves

An A1-curve is an algebraic map fromA
1 to the interior of a pair. When the boundary

is empty, A1-curves are simply rational curves. We first study A
1-curves on generic

complete intersection pairs of general type.

Theorem 1.3 Let (X, D) be a generic complete intersection pair in P
n of type

(d1, · · · , dc; k). If d ≥ 2n − c, the interior X − D contains no A
1-curves.

When the boundary is nonempty, the bound in Theorem 1.3 is optimal because a
general such pair in Pn with d ≤ 2n − c − 1 always admits an A1-line. Furthermore,
we complete the last step in the study of A1-curves on complete intersection surface
pairs in Pn of total degree d, summarized as the table below.

dim X = 2 (X, D) A
1-curves

d ≤ n Log Fano Log rationally connected [4]
d = n + 1 Log K3 Generically countable [1,5,8]
d ≥ n + 2 Of log general type Generically none (Theorem 1.3)
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1.2 Algebraic hyperbolicity

Theorem 1.4 Let (X, D) be a generic complete intersection pair in P
n of type

(d1, · · · , dc; k). If

d ≥ 2n − c − l + 1,

every closed subvariety Y of X − D of dimension l has an effective log canonical
bundle on its desingularisation; and if the equality is strict, Y has a big log canonical
bundle on its desingularisation.

Theorem 1.4 implies algebraic hyperbolicity of such pairs.

Corollary 1.5 Let X be a generic complete intersection in Pn of type (d1, · · · , dc; k).
If d ≥ 2n − c + 1, the interior X − D is algebraically hyperbolic.

For generic complete intersection pairs of type (1; k), Theorems 1.3, 1.4 and Corol-
lary 1.5 are proved by the first named author [2] and Pacienza-Rousseau [9].

1.3 A
1-equivalence of zero cycles

For open varieties, the right substitution for Chow group of zero cycles is Suslin’s 0-th
homology group h0(U ), that is, the group of zero cycles modulo A

1-equivalences.
When the boundary is empty, it coincides with the Chow group of zero cycles. For
surface pairs, the log version of Mumford’s theorem and Bloch’s conjecture was stud-
ied in [15,16]. For generic complete intersection pairs, we have the following stronger
version of Theorem 1.3.

Theorem 1.6 Let (X, D) be a generic complete intersection pair in P
n of type

(d1, · · · , dc; k). If d ≥ 2n − c + 2, no two points of the interior X − D are A
1-

equivalent.

2 Global positivity

In this section, we generalizeVoisin’s global positivity result [12, Prop. 1.1] for smooth
complete intersection pairs. For the rest of the paper, we fix the following notations.

Notation 2.1 With the same notations as in Definition 1.1, let k := dc+1. Let
Sdi := H0(OPn (di )) for i = 1, · · · , c + 1. Let S be the product

∏c+1
i P(Sdi )∨

of projective spaces. We denote by S◦ the open subset of S parametrizing smooth
complete intersection tuples. Let (X ,D) ⊂ P

n × S◦ be the universal family of smooth
complete intersection pair. Let OX (1) be the pullback line bundle pr∗

1 (OPn (1)). For
any t ∈ S◦, denote by (Xt , Dt ) the smooth complete intersection pair parametrized by
t . We assume that dim Xt ≥ 2. For any log pair (Y, E), denote by TY † its log tangent
bundle TY (− log E).
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Lemma 2.2 For all 0 < i < dim X and all smooth complete intersection pairs (X, D)

with dim X ≥ 2, we have

H0(�i
X (log D)) = 0.

Proof The long exact sequence of the residue sequence gives

H0(�i
X ) → H0(�i

X (log D)) → H0(�i−1
D ) → H1(�i

X ).

The first term vanishes by the Lefschetz hyperplane theorem. If dim D ≥ 2, the third
term vanishes by the Lefschetz hyperplane theorem as well. If dim D = 1, the last
map is the Gysin map which is injective. Therefore, H0(�i

X (log D)) = 0. 
�
Lemma 2.3 If d ≥ n + 2, then h0(TX†

t
(1)) = 0 for every t ∈ S◦.

Proof By the isomorphism

TX†
t

∼= �n−1
Xt

(log Dt ) ⊗ OXt (−KXt − Dt )

and Lemma 2.2, we have

h0(TX†
t
(1)) = h0(�n−1

Xt
(log Dt ) ⊗ OXt (−KXt − Dt ) ⊗ O(1))

= h0(�n−1
Xt

(log Dt ) ⊗ O(n + 2 − d))

≤ h0(�n−1
Xt

(log D)) = 0.


�
Proposition 2.4 The log tangent bundle

TX †(1)|Xt

is globally generated for every t ∈ S◦ if h0(TX†
t
(1)) = 0.

Proof By [4, Lem. 4.1], we have the short exact sequence

0 OD TX †|D TD 0.

The global generation of TX †(1)|Xt implies the global generation of TD(1)|Dt . In
particular, Proposition 2.4 for the nonempty boundary case implies the empty boundary
case. For the rest of the proof, we assume that the boundary is nonempty.

Since (X ,D) is a log smooth family over S◦, we have

0 TX†
t
(1) TX †(1)|Xt TS,t ⊗ OXt (1) 0.
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By [4, Lemma 2.1], the log tangent bundle TX † is determined by the short exact
sequence:

0 TX † OX (1)⊕(n+1) α ∑c+1
i=1 OX (di ) 0,

where α is given by the multiplication of the Jacobian. The above two sequences lead
to the commutative diagram:

0 TX†
t
(1)

id

TX †(1)|Xt TS,t ⊗ OXt (1)

ev

0

0 TX†
t
(1) OXt (2)

⊕(n+1) α ∑c+1
i=1 OX (di + 1)|Xt 0.

Since h0(TX†
t
(1)) = 0, we obtain the corresponding long exact sequences

0 H0(TX †(1)|Xt ) TS,t ⊗ S1

μ

μ

ev

H1(T
X†
t
(1))

id

H1(TX †(1)|Xt )

0 H0(OXt (2)
⊕(n+1))

α ∏c+1
i=1 Sdi+1|Xt H1(T

X†
t
(1))

β
H1(OXt (2)

⊕(n+1)).

We have the following properties:

(1) H0(TX †(1)|Xt ) = ker(μ);
(2) ker(β) = ∏c+1

i Sdi+1/ Im(α);
(3) since ev is surjective, Im(μ) = ker(β). Thus we have the map

μ : TS,t ⊗ S1 → ker(β).

Now for any point x ∈ Xt , tensoring all the terms in the diagrams as above with
the ideal sheaf Ix , we have another commutative diagram:

H0(TX †(1)|Xt ⊗ Ix ) TS,t ⊗ S1x

μx

μx

evx

H1(TX†
t
(1) ⊗ Ix )

id

H1(TX †(1)|Xt ⊗ Ix )

H0(OXt (2)
⊕(n+1) ⊗ Ix )

αx ∏c+1
i Sdi+1

x H1(TX†
t
(1) ⊗ Ix )

βx
H1(OXt (2)

⊕(n+1) ⊗ Ix ),

where Smx = H0(OXt (m) ⊗ Ix ). We have the following properties:

(1) H0(TX †(1)|Xt ⊗ Ix ) = ker(μx );
(2) ker(βx ) = ∏c+1

i Sdi+1
x / Im(αx );
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(3) since evx is surjective (a crucial fact), we have Im(μx ) = ker(βx ). Thus we write

μx : TS,t ⊗ S1x → ker(βx ).

Finally, consider the commutative diagram:

0 H0(TX†
t
(1)|x )

γ

H1(TX†
t
(1) ⊗ Ix )

βx

H1(TX†
t
(1))

β

0

H0(OXt (2)
⊕(n+1))

u
H0(OXt (2)

⊕(n+1)|x ) H1(OXt (2)
⊕(n+1) ⊗ Ix ) H1(OXt (2)

⊕(n+1)) 0.

Since OXt (2)
⊕n+1 is globally generated, the map u is surjective. In particular, the

composite map γ is the zero map. Hence we get

0 H0(TX†
t
(1)|x ) ker(βx ) ker(β) 0.

It follows that

dim Im(μx ) − dim Im(μ) = dim Xt .

On the other hand, we have

dim ker(μ) − dim ker(μx ) = dim TS,t ⊗ S1 − dim TS,t ⊗ S1x
+ dim Im(μx ) − dim Im(μ)

= dim S + dim Xt = dimX .

Thus

h0(TX †(1)|Xt ) − h0(TX †(1)|Xt ⊗ Ix ) = dimX .

In particular, TX †(1)|Xt is globally generated. 
�
Now Proposition 2.4 implies

Corollary 2.5 For all l ≥ 0, the bundle ∧l TX † ⊗ OXt (l) is globally generated and
the bundle ∧l TX † ⊗ OXt (l + 1) is very ample if d ≥ n + 2. 
�

Corollary 2.6 If d ≥ n + 2, then �dimX−l
X † |Xt = ∧dimX−l�X (logD)|Xt is globally

generated when d ≥ l + n + 1 and is very ample when the inequality is strict.

Proof By the isomorphism

∧l TX † ∼= ∧dimX−l�X † ⊗ K−1
X †
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we have

∧l TX † ⊗ OXt (l) = �dimX−l
X † ⊗ K−1

X † ⊗ OXt (l)

= �dimX−l
X † ⊗ OXt (l + n + 1 − d).

Now the assertions follow from Corollary 2.5. 
�

3 Proof of Main Theorems

3.1 Proof of Theorems 1.3, 1.4

Proof of Theorem 1.3 The A1 curves lying on the fibers of X − D are parameterized
by a subscheme of the relative Hilbert schemes ofX /S◦, which is a locally noetherian
scheme. It has at most countably many irreducible components. If the statement of
the theorem fails, one of the components of this scheme must dominate S◦ and the A1

curves parameterized by this component will cover X ; thus there exists a family of
A
1-curves

V × A
1 f

(X ,D)

V
j

S◦,

where j is an étale dominant morphism and f is dominant. By [16, Lem. 3.1], the
morphism f extends to a morphism of log pairs

f : (V ′ × P
1, V ′ × {∞}) → (X ,D),

where V ′ is a dense open subset of V . Here the dimension of (V ′ × P
1, V ′ × {∞}) is

dimX − (n − c) + 1. Corollary 2.6 with l = n − c − 1 implies that �dimX−l
X † |Xt is

globally generated if

d ≥ n − c − 1 + n + 1 = 2n − c.

Pullback via f gives a nontrivial section of the log canonical bundle of (V ′ ×P
1, V ′ ×

{∞}), which is absurd because the pair is log uniruled. 
�
Proof of Theorem 1.4 The bound d ≥ 2n− c− l + 1 implies that �dimX−l

X † |Xt is very
ample. Now Theorem 1.4 follows from the same proof as in [9, Cor. 3]. 
�

3.2 A
1-equivalence of two points

To prove Theorem 1.6, we introduce a Mumford type invariant δZ following Voisin’s
approach [11].
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Notation 3.1 Let

π : (X ,D) → B

be a log smooth family of log pairs of relative dimension n ≥ 2 with connected fibers,
B smooth of dim B = N and D �= ∅. Assume that there are two distinct sections

p, q : B → X − D

and denote the relative zero cycle Z = p(B) − q(B).

The relative zero cycle Z defines a map

δZ : π∗�N
X

dp−dq
�N

B

where dp and dq are differential maps induced by p : B → X and q : B → X ,
respectively. Since Z is disjoint from D, δZ can be actually defined as

δZ : π∗�N
X (logD)

dp−dq
�N

B .

Therefore, δZ is a class in

δZ ∈ Hom(π∗�N
X (logD),�N

B ) ⊂ Hom(π∗�N
X ,�N

B ).

If we shrink B such that h0(Xb,�
N
X (logD)) is constant and B is affine, then

Hom(π∗�N
X (logD),�N

B ) = H0((π∗�N
X (logD))∨ ⊗ KB)

= H0(Rnπ∗(�N
X (logD)∨ ⊗ KX /B) ⊗ KB)

= H0(Rnπ∗(�N
X (logD)∨ ⊗ KX ))

= H0(Rnπ∗(�n
X (logD) ⊗ (KX (D))−1 ⊗ KX ))

= H0(Rnπ∗(�n
X (logD)(−D)))

= Hn(�n
X (logD)(−D))

where we use the relative Serre duality, the pairing

�N
X (logD) ⊗ �n

X (logD) KX (D)

and Leray spectral sequence. So we may think of δZ as a class in

δZ ∈ Hn(�n
X (logD)(−D)).

Clearly, the definition of δZ can be extended in an obvious way to all N -dimensional
cycles of the form Z = ∑

mi pi (B), where pi are sections of X /B disjoint from D.
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Next we prove that δZ vanishes for any relative zero cycle that is A1-equivalent to
0. This is the relative version of the log Mumford theorem [16, Thm. 3.3].

Lemma 3.2 Let Z be a relative zero cycle
∑

mi pi (B) as above, where pi are sections
X /B disjoint fromD and mi ∈ Z. If Zb isA1-equivalent to 0 onXb for b ∈ B general
and π∗�N

X (logD) is locally free on B, then δZ = 0.

Proof We give a brief sketch of the proof for the sake of completeness and refer the
reader to [16] for more detail. Since π∗�N

X (logD) is locally free, δZ = 0 if and only
if δZb = 0 at a general point b ∈ B. So we can shrink B in any way we like. We can
also apply base changes toX /B: Let f : B̂ → B be a dominant and generically finite
morphism with the diagram

(X̂ , D̂)
f

π

(X ,D)

π

B̂
f

B

where X̂ = X ×B B̂ and D̂ = D ×B B̂. This induces

f ∗(π∗�N
X (logD))

f ∗δZ
f ∗�N

B

π∗�N
X̂ (log D̂)

δ Ẑ
�N

B̂

(3.1)

where Ẑ = f ∗Z . Over a nonempty open set of B, the columns of (3.1) are isomor-
phisms. So δZ = 0 if and only if δ Ẑ = 0, as long as π∗�N

X (logD) is locally free. So
we may replace (X ,D, B, Z) by (X̂ , D̂, B̂, Ẑ) under any dominant and generically
finite base change B̂ → B.

LetXa = X ×B X ×B ...×B X be the a-th self product ofX over B, ρi : Xa → X
be the i-th projection of Xa to X , Da = ∑

ρ∗
i D and

(X a,Da) = (Xa,Da)/	a

be the quotient of (Xa,Da) by the symmetric group 	a acting on the a factors of Xa .
A cycleW = p1(B)+ p2(B)+...+ pa(B)with pi sections ofX /B can be regarded

as a section of X a/B:

B

w

(p1,p2,...,pa) Xa

g

X a
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Assuming that supp(W ) ∩ D = ∅, we have

δW (ω) =
a∑

i=1

w∗g∗ρ∗
i ω (3.2)

for all ω ∈ H0(�N
X (logD)), where g∗ : �N

Xa
(logDa) → �N

X a
(logDa) is the trace

map. Note that (X a,Da) fails to be log smooth on a closed subscheme of codimension
≥ 2 and we define its log differential sheaf to be

�X a
(logDa) = j∗�U (logDa)

for j : U ↪→ X a , where U is the open set of X a over which X a is smooth and Da

has normal crossings.
Since Zb is A1-equivalent to 0 on Xb for b ∈ B general, again by a Hilbert scheme

argument, for a sufficiently large and after a base change, there exists a morphism

B × A
1 z X a − Da

B

preserving the base B such that

Z = z∗(B × {0}) − z∗(B × {1}) =
a∑

i=1

pi (B) −
a∑

i=1

qi (B).

Again by shrinking B, we may extend z to

B × P
1 z X a

B

Let V = B × P
1 and Vt be the fiber of V over t ∈ P

1. Then z is a log morphism
(V, V∞) → (X a,Da) and thus induces differential maps

z∗ : �•
X a

(logDa) �•
V (log V∞).

For all γ ∈ H0(�N
X a

(logDa)),

z∗γ ∈ H0(�N
V (log V∞)) = H0(�N

B ) ⊗ H0(OP1) ⊕ H0(�N−1
B ) ⊗ H0(�P1(1))

= H0(�N
B ) ⊗ H0(OP1)
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and hence
( j∗0 − j∗1 )z∗γ = 0 (3.3)

for jt : B = Vt ↪→ V . Therefore, using (3.2) and (3.3), we obtain

δZ(ω) = ( j∗0 − j∗1 )z∗
a∑

i=1

g∗ρ∗
i ω = 0

for all ω ∈ H0(�N
X (logD)). By shrinking B, we may assume that π∗�N

X (logD) is
globally generated. So δZ = 0. 
�
Lemma 3.3 If �N

X (logD) is very ample when restricted to a general fiber of X /B,
then δZ �= 0 for Z = p(B) − q(B) and all pairs of distinct sections p, q of X /B
disjoint from D.

Proof By shrinking B, wemay assume that h0(Xb,�
N
X (logD)) is constant, B is affine

and�N
X (logD) is very ample onX . Hence the two sections P = p(B) and Q = q(B)

impose independent conditions on H0(�N
X (logD)). That is, we have a surjection

H0(�N
X (logD)) H0(P,�N

X (logD)|P ) ⊕ H0(Q,�N
X (logD)|Q).

Then we see that δZ is surjective through the diagram

H0(�N
X (logD))

δZ

H0(P,�N
X (logD)|P ) ⊕ H0(Q,�N

X (logD)|Q)

dp⊕dq

H0(�N
B ) ⊕ H0(�N

B )

ω1−ω2

H0(�N
B )

So δZ �= 0. 
�
Proof of Theorem 1.6 If the conclusion is not true, again by aHilbert scheme argument
as before, there exists a smooth variety S′ étale dominant over an open subset of S
such that

• the base change (X ,D) ×S S′ admits two distinct sections p and q over S′;
• the relative zero cycle Z = p(S′) − q(S′) is trivial under A1-equivalence.

By Lemma 3.2, δZ vanishes on some open subset of S′. On the other hand, by
Corollary 2.6, �dimX−dim Xt

X † |Xt is very ample if

d ≥ n − c + n + 1 + 1 = 2n − c + 2.

Thus by Lemma 3.3, δZ is not zero at a general point t ∈ S′. We have a
contradiction. 
�
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