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1. Introduction

In this paper, we work with varieties over an algebraically closed field k of arbitrary characteristic.

Definition 1 ([5, IV.3]). Let X be a smooth variety defined over k.
A variety X is rationally connected if there is a family of irreducible proper rational curves

g : U → Y and a morphism u : U → X such that the morphism u(2) : U ×Y U → X ×X is dominant.
A variety X is separably rationally connected if there exists a proper rational curve f : P1 → X

such that the image lies in the smooth locus of X and the pullback of the tangent sheaf f ∗T X is
ample. Such rational curves are called very free curves.

We refer to Kollár’s book [5] or the work of Kollár–Miyaoka–Mori [6] for the background. If
X is separably rationally connected, then X is rationally connected. The converse is true when
the ground field is of characteristic zero by generic smoothness. In positive characteristic, the
converse statement is open.

In characteristic zero, a very important class of rationally connected varieties are Fano vari-
eties, i.e., smooth varieties with ample anticanonical bundles. In positive characteristic, we only
know that they are rationally chain connected.

Question 2 (Kollár). In arbitrary characteristic, is every smooth Fano variety separably rationally
connected?

The question is open even for Fano hypersurfaces in projective spaces. In this paper, we prove
the following theorem.

Theorem 3. In arbitrary characteristic, a general Fano hypersurface of degree n in Pn
k contains

a minimal very free rational curve of degree n, i.e., the pullback of the tangent bundle has the
splitting type O (2)⊕O (1)⊕(n−2).

Theorem 4. In arbitrary characteristic, a general Fano hypersurface in Pn
k is separably rationally

connected.
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de Jong and Starr [4] proved that every family of separably rationally connected varieties over a
curve admits a rational section. Thus using Theorem 4, we give another proof of Tsen’s theorem.

Corollary 5. Every family of Fano hypersurfaces in Pn over a curve admits a rational section.
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2. Typical Curves and Deformation Theory

Notation 6. Let n be an integer ≥ 3. Let X be a hypersurface of degree n in Pn . Let C be a smooth
rational curve of degree e contained in the smooth locus of X . Consider the normal bundle exact
sequence.

0 // T C // T X |C // NC |X // 0

By adjunction, the degree of T X |C is the degree of OPn (1)|C . Thus the degree of the normal bundle
NC |X is e −2 and the rank is n −2.

Definition 7. Let e be a positive integer ≤ n. A smooth rational curve C of degree e contained in
the smooth locus of X is typical, if its normal bundle is the following:

NC |X ∼=
{

O⊕(n−3)
C ⊕OC (−1), if e = 1,

O⊕(n−e)
C ⊕OC (1)⊕(e−2), if e ≥ 2.

The curve C is a typical line, resp., typical conic if moreover the degree of C is one, resp., two.

Remark 8.

(1) For a typical line L on X , there is a canonically defined trivial subbundle O⊕(n−2)
L in NL|X .

(2) When e = n, typical rational curves of degree n are very free.

Lemma 9. Let C be a smooth rational curve of degree e on the smooth locus of a hypersurface X of
degree n, where 2 ≤ e ≤ n. Then C is typical if and only if both of the following conditions hold:

(1) h1(C ,NC |X (−1)) = 0,
(2) h1(C ,NC |X (−2)) ≤ n −e.

Proof. Recall that the rank of the normal bundle NC |X is n −2 and the degree is e −2. Assume
that NC |X has the splitting type OC (a1)⊕ ·· · ⊕OC (an−2), where a1 ≥ ·· · ≥ an−2. Condition (1) is
equivalent to that an−2 ≥ 0. Condition (2) implies that at most n − e of the ai ’s are 0. By degree
count, C is a typical rational curve of degree e. □

Similarly, we have the following cohomological criterion for typical lines.

Lemma 10. Let L be a smooth line on the smooth locus of X . Then L is typical if and only if both
of the following conditions hold:

(1) h1(C ,NL|X ) = 0,
(2) h1(C ,NL|X (−1)) ≤ 1.

Let Hn be the Hilbert scheme of hypersurfaces of degree n in Pn . It is isomorphic to a
projective space. Let X → Hn be the universal hypersurface. The morphism X → Hn is flat
projective and there exists a relative very ample invertible sheaf OX (1) on X .

Let Re,n be the Hilbert scheme parameterizing flat projective families of one-dimensional
subschemes in X with the Hilbert polynomial P (d) = ed+1. By [5, Theorem 1.4], Re,n is projective
over Hn .
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Let C be the universal family over Re,n , denoted by π : C → Re,n . We have the following
diagram,

C

π

��

i // X ×Hn Re,n

yy

Re,n

where i is a closed immersion.
Typical rational curves on hypersurfaces are deformation open in the following sense.

Proposition 11. Let e be a positive integer ≤ n. There exists an open subset in Re,n parameterizing
typical curves of degree e in hypersurfaces of degree n.

Proof. By Lemma 10 and Lemma 9, every typical curve C on a hypersurface X gives an unob-
structed point in Re,n . By the upper semicontinuity theorem [3, III.12.8], a small deformation of
(X t ,Ct ) is still typical and Ct is contained in the smooth locus of X t . □

Proposition 12. Let X be a hypersurface of degree n in Pn . Let L and M be two typical lines on X
intersecting transversally at one point p. Assume that the following conditions hold:

(1) the direction Tp L lies outside the trivial subbundle of NM |X ;
(2) the direction Tp M lies outside the trivial subbundle of NL|X .

Then the pair (X ,D = L ∪M) ∈ R2,n can be smoothed to a pair (X ′,C ) where C is a typical conic in
X ′. Furthermore, there exists an open neighborhood of (X ,D = L ∪M) in which any smoothing of
(X ,D = L∪M) is a typical conic.

Proof. Let D be the union of the lines L and M . Since D is a local complete intersection in the
smooth locus of X , the normal bundle ND|X is locally free. We have the following short exact
sequence.

0 // NL|X // ND|X |L // Tp M // 0

By [2, Lemma 2.6], the locally free sheaf ND|X |L is the sheaf of rational sections of NL|X which has
at most one pole at the direction of Tp M . Since NL|X ∼= O⊕(n−3)

L ⊕OL(−1), condition (2) implies
that ND|X |L is isomorphic to O⊕(n−2)

L .
By the same argument, condition (1) implies that the sheaf ND|X |M is isomorphic to O⊕(n−2)

M .
Now we have the following short exact sequence.

0 // ND|X |M (−p) // ND|X // ND|X |L // 0

OM (−1)⊕(n−2) O⊕(n−2)
L

First we claim that there is a smoothing of D . Since h1(D,ND|X ) = 0, the pair (X ,D) is
unobstructed in R2,n , cf. [5, I.2]. By [7, Lemma 3.17], it suffices to show that the map

H 0(D,ND|X ) → H 0(L,ND|X |L) → Tp M

is surjective. Since H 1(M ,ND|X |M (−p)) = 0, the first map is surjective. Since H 1(L,ND|X |L) = 0,
the second map is also surjective.

Let q , r be two distinct points on L− {p}. We have

h1(D,ND|X (−q)) = 0 and h1(D,ND|X (−q − r )) = n −2.

Now for any smoothing (X t ,D t ) of (X ,D) over a curve T , we can specify two distinct points qt

and rt on D t which specialize to q and r on D . After shrinking T , we may assume that the conic
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D t is contained in the smooth locus of X t . By the upper semicontinuity theorem and Lemma 9,
D t is a typical conic on X t . □

Definition 13. Let X be a hypersurface of degree n in Pn . A typical comb with m teeth on X
is a reduced curve in X with m + 1 irreducible components C ,L1, . . . ,Lm satisfying the following
conditions:

(1) C is a typical conic on X ;
(2) L1, . . . ,Lm are disjoint typical lines on X and each Li intersects C transversally at pi .

The conic C is called the handle of the comb and Li ’s are called the teeth.

Proposition 14. Let X be a hypersurface of degree n in Pn . Let D =C ∪L1 ∪·· ·∪Ln−2 be a typical
comb with n − 2 teeth on X . Let pi be the intersection point Li ∩C . Assume that the following
conditions hold:

(1) the direction Tpi C lies outside the trivial subbundle of NLi |X ;
(2) the directions Tpi Li are general in NC |X so that the sheaf ND|X |C is isomorphic to

OC (1)⊕(n−2).

Then the pair (X ,D) ∈ Rn,n can be smoothed to a pair (X ′,C ′) where C ′ is a very free rational curve
on X ′.

Proof. The proof is very similar to the proof of Proposition 12. Here we only sketch the proof.
Condition (1) implies that the sheaf ND|X |Li is isomorphic to O⊕(n−2)

Li
for each i . We have the

following short exact sequence.

0 //
⊕

i ND|X |Li (−p) // ND|X // ND|X |C // 0

OLi (−1)⊕(n−2) OC (1)⊕(n−2)

Since H 1(D,ND|X ) = 0, D is unobstructed. By diagram chasing, the map H 0(D,ND|X ) →⊕
i Tpi Li

is surjective. Thus we can smooth the typical comb D .
Now we may choose a smoothing (X t ,D t ) and specify two distinct points (qt ,rt ) which

specialize to two distinct points (q,r ) on C − {p1, . . . , pn−2}. By the long exact sequence in
cohomology associated to the above exact sequence, we know that h1(D,ND|X (−q − r )) = 0. By
the upper semicontinuity theorem, a general smoothing of the pair (X ,D) gives a very free curve
in a general hypersurface. □

3. An Example

In this section, we construct a hypersurface of degree n in Pn , which contains a special config-
uration of typical lines. Later we will use this example to produce a very free curve in a general
hypersurface.
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Notation 15. Let n be an integer ≥ 4. Let [x0 : · · · : xn] be homogeneous coordinates for Pn . Let
X be a hypersurface of degree n in the projective space Pn defined by the following equation
F (x0, . . . , xn). Let ei be the point in Pn represented by the i -th unit vector in kn+1.

xn−1
0 xn +xn−3

1 x2
n x0 +(xn−1

1 +x0xn−2
1 +·· ·+xn−3

0 x2
1)x2 +(xn−1

2 +x0xn−2
2 +·· ·+xn−3

0 x2
2)x3

+xn−4
1 x3

n x3 +(x0xn−2
1 +·· ·+xn−3

0 x2
1)x3 +(x0xn−2

2 +·· ·+xn−3
0 x2

2)x4
...

...
...

+x1xn−2
n xn−2 +(xn−4

0 x3
1 +xn−3

0 x2
1)xn−2 +(xn−4

0 x3
2 +xn−3

0 x2
2)xn−1

+xn−1
n xn−1 +xn−3

0 x2
1 xn−1 +xn−3

0 x2
2 x1

+ ·· · +(xn−1
n−1 +x0xn−2

n−1 +·· ·+xn−3
0 x2

n−1)x1

+ ·· · +(x0xn−2
n−1 +·· ·+xn−3

0 x2
n−1)x2

...
...

+ ·· · +(xn−4
0 x3

n−1 +xn−3
0 x2

n−1)xn−3

+ ·· · +xn−3
0 x2

n−1xn−2

Let p be the point [1 : 0 : · · · : 0] and q be the point [0 : 1 : 0 : · · · : 0]. Let Li be the line spanned
by {e0,ei } for i = 1, . . . ,n − 1 and Ln be the line spanned by {e1,en}. It is easy to check that they
all lie in the hypersurface X . Let C be the union of L1, . . . ,Ln . The following picture shows the
configuration of the points and the lines in the projective space.

Lemma 16.

(1) Both p and q lie in the smooth locus of X .
(2) The tangent space Tp X is the hyperplane {xn = 0}, which is spanned by the lines

L1, . . . ,Ln−1.
(3) The tangent space of Tq X is the hyperplane {x2 = 0}.

Proof. By taking the partial derivatives of F , we have ∂F
∂xi

(p) = 0 for i = 0, . . . ,n −1 and ∂F
∂xn

(p) = 1.

Similarly, we have ∂F
∂xi

(q) = 0 for i ̸= 2 and ∂F
∂x2

(q) = 1. □

Lemma 17. The lines L1, . . . ,Ln−1 are in the smooth locus of X .
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Proof. We will prove the case for line L1. The remaining cases can be computed directly by the
same method. Denote L1 = {[x0 : x1 : 0 : · · · : 0] ∈ Pn}. By restricting the partial derivatives of the
defining equation of the hypersurface X on L1, we get the following.

∂F

∂x2

∣∣∣∣
L1

= xn−1
1 +x0xn−2

1 +·· ·+xn−3
0 x2

1

∂F

∂x3

∣∣∣∣
L1

= x0xn−2
1 +·· ·+xn−3

0 x2
1

...

∂F

∂xn−2

∣∣∣∣
L1

= xn−4
0 x3

1 +xn−3
0 x2

1

∂F

∂xn−1

∣∣∣∣
L1

= xn−3
0 x2

1

∂F

∂xn

∣∣∣∣
L1

= xn−1
0

(1)

For points on L1 with x0 ̸= 0, we have ∂F
∂xn

|L1 ̸= 0. At the point q , ∂F
∂x2

|L1 ̸= 0. Hence every point
on the line L1 is a smooth point of X . □

Lemma 18. The line Ln is in the smooth locus of X .

Proof. By restricting the partial derivatives of the defining equation of X on Ln , we get the
following.

∂F

∂x0

∣∣∣∣
Ln

= xn−3
1 x2

n

∂F

∂x3

∣∣∣∣
Ln

= xn−4
1 x3

n

...

∂F

∂xn−2

∣∣∣∣
Ln

= x1xn−2
n

∂F

∂xn−1

∣∣∣∣
Ln

= xn−1
n

∂F

∂x2

∣∣∣∣
Ln

= xn−1
1

(2)

For points on Ln with x1 ̸= 0, we have ∂F
∂x2

|Ln ̸= 0. For points on Ln with xn ̸= 0, we have
∂F

∂xn−1
|Ln ̸= 0. Hence every point on the line Ln is a smooth point of X . □

Proposition 19. With the setup as in Notation 15, X satisfies the following properties.

(1) The lines L1, . . . ,Ln are typical in X .
(2) For i = 1, . . . ,n −1, the trivial subbundle of the normal bundle NLi |X at p is generated by

∂i+1 −∂i+2, . . . ,∂i+n−3 −∂i+n−2, where the notation j is j if j is less than n and j − (n−1) if
otherwise.

(3) The trivial subbundle of the normal bundle NL1|X at q is generated by ∂3, . . . ,∂n−1

(4) The trivial subbundle of the normal bundle NLn |X at q is generated by ∂3, . . . ,∂n−1.
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Proof. Let L be a line in X . We have the following short exact sequences.

0 // NL|X (−1) // NL|Pn (−1) // NX |Pn |L(−1) // 0

0 // NL|X (−1) // O⊕(n−1)
L

// OL(n −1) // 0.

The associated long exact sequence is the following.

H 0(L,NL|X (−1)) → kn α // H 0(L,OL(n −1)) // H 1(L,NL|X (−1)) // 0

where the map α sends the natural basis of kn to the derivatives of F with respect to the normal
directions of L in Pn . By Lemma 10, L is typical if and only if the image ofα is of codimension one
in H 0(L,OL(n −1)).

When L = L1, by (1), ∂F
∂x2

|L1 , . . . , ∂F
∂xn

|L1 form a codimensional-one subspace of H 0(L1,OL1 (n −
1)). Thus we get that H 1(L1,NL1|X (−1)) is one dimensional, i.e., L1 is typical in X .

By the short exact sequence above, NL1|X (−1) is a subbundle of the trivial bundle O⊕(n−1)
L1

which maps to 0 in OL1 (n − 1). Let ∂2, . . . ,∂n be the generators of O⊕(n−1)
L1

. We get NL1|X (−1) is
generated by x0(∂2−∂3)−x1(∂3−∂4), . . . , x0(∂n−2−∂n−1)−x1∂n−1, x2

0∂n−1−x2
1∂n as an OL1 -module.

If we restrict the bundle at p and q , we get properties (2) and (3) for L1.
When L = L2, . . . ,Ln−1, we can prove properties (2) and (3) in a similar way. When L = Ln , (4)

follows from the same computation as above by applying (2). □

With the description of the trivial subbundles of the normal bundles of lines in X as above, we
get the following corollaries.

Corollary 20. With the setup as in Notation 15, we have the following statements.

(1) The lines L1 and Ln are typical in X .
(2) The direction Tq L1 lies outside the trivial subbundle of NLn |X .
(3) The direction Tq Ln lies outside in the trivial subbundle of NL1|X .

Corollary 21. With the setup as in Notation 15, we have the following statements.

(1) The lines L2, . . . ,Ln−2 are typical in X .
(2) The direction Tp L1 lies outside the trivial subbundle of NLi |X for 2 ≤ i ≤ n −1.
(3) The directions Tp L2, . . . ,Tp Ln−1 span the normal bundle NL1|X at p.

4. Proof of the Main Theorem

Lemma 22. Let C be the union of n lines L1, . . . ,Ln in Pn as in Notation 15. The following
properties hold for C for every positive integer d:

(1) h0(C ,OC (d)) = nd +1 and h1(C ,OC (d)) = 0.
(2) h1(C ,IC (d)) = 0.
(3) h0(C ,IC (d)) = h0(Pn ,O (d))−nd −1.

Remark 23. The curve C is an example of curves with rational n-fold point, cf. [1, 3.7]. The
following lemma is an analogue of [1, Lemma 3.8].

Proof. This can be computed directly. For any d > 0, when i = 1, . . . ,n−1, the homogeneous poly-
nomials of degree d that do not vanish on Li are generated by {xd

0 , xd−1
0 xi , . . . , xd

i }. The homoge-
neous polynomials of degree d that do not vanish on Ln are generated by {xd

1 , xd−1
1 xi , . . . , xd

n }.
Since every global section of OC (d) is obtained by gluing global sections on each component,
which imposes exactly n −1 linear conditions, we have

h0(OC (d)) = n(d +1)− (n −1) = nd +1
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and h0(OPn (d)) → h0(OC (d)) is surjective for any d . In particular, the arithmetic genus of C is zero.
Condition (1) is proved. The rest of the lemma follows by considering the long exact sequence in
cohomology

0 // h0(C ,IC (d)) // h0(OPn (d)) // h0(OC (d)) // h1(C ,IC (d)). □

Construction 24. Let C be the union of n lines L1, . . . ,Ln in Pn as in Notation 15. If we consider
L1∪Ln as a conic inPn , there exists a smooth affine pointed curve (T,0) and a smoothing D ′ → (T,0)
satisfying the following conditions:

(1) The special fiber D ′
0 is L1 ∪Ln ;

(2) For any t ∈ T − {0}, D ′
t is a smooth conic contained in the plane spanned by L1 and Ln .

We may assume that there exists n −2 sections si : (T,0) → D ′ for i = 1, . . . ,n −2 such that si (0) = p
for all i ’s and for t ∈ T − {0}, si (t )’s are all distinct on D ′

t .
For any si (t ), there exists a unique line Li+1(t ) through si (t ) parallel to Li+1. After gluing the

families of lines Li+1(t ) on D ′
t at si (t ) for all i ’s, we get a family of reducible curves π : D → (T,0)

satisfying the following conditions:

(1) The special fiber D0 is C constructed as in Notation 15.
(2) For any t ∈ T − {0}, D t is a comb with the handle D ′

t and with the teeth lines.

We have the following diagram.

D0 =C //

��

D

π

��

i // Pn
T

π
}}

0 // (T,0)

Lemma 25. The family π : D → (T,0) is flat. Furthermore, π∗ID (d) is locally free on T for any
d > 0, where ID is the ideal sheaf of D in Pn

T .

Proof. The same computational argument as in the proof of Lemma 22 proves that h0(Pn
t , ID t (d))

and h1(Pn
t , ID t (d)) are constant for any t ∈ T −{0}. Thus the Hilbert polynomial is constant. Hence

the family is flat over T . The remaining part of the lemma follows from the cohomology and base
change theorem [3, III.12.9]. □

Proof of Theorem 3. The theorem is known for n = 2,3. We can assume that n ≥ 4. By [5, IV.3.11],
it suffices to produce one very free curve on a hypersurface of degree n. By Lemma 25, after
shrinking T , hypersurfaces of degree n containing D t in Pn

t form a trivial projective bundle over
(T,0). Thus the family π : D → (T,0) admits a lifting to a flat family of pairs π : (XT ,D) → (T,0) in
Rn,n such that the special fiber (X0,D0) is (X ,C ) which is constructed in Section 3.

D

π

��

i // XT
//

||

Pn
T

π
vv

(T,0)

All the following steps of the proof requires to shrink T if necessary. By Proposition 12 and
Corollary 20, we may assume that the handle D ′

t is a typical conic in Xt for every t ∈ T − {0}.
By Proposition 11 and Corollary 21 (1), all the teeth of the comb D t are typical. Thus for every
t ∈ T − {0}, we get a typical comb D t as in Definition 13. Now the theorem follows if we verify the
two conditions in Proposition 9. Since they are open conditions, it suffices to check on the special
fiber (X ,C ), which is proved in Corollary 21. □
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Proof of Theorem 4. For a general Fano hypersurfaces of degree d in Pn , when d = n, this is
proved in Theorem 3. When d < n, we may choose a general Fano hypersurface Y of degree d
in Pd admitting a very free curve f : P1 → Y . Construct the cone X of Y in Pn . Note that Y is
the intersection of a projective subspace L of dimension d and X . By the normal bundle exact
sequence,

0 // T Y // T X // NY |X // 0

the sheaf f ∗T Y is positive and the sheaf NY |X is isomorphic to NL|Pn , which is positive too.
Therefore the pullback bundle f ∗T X is positive. □
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