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Abstract. By studying the theory of rational curves, we introduce a notion

of rational simple connectedness for projective homogeneous spaces. As an

application, we prove that over the function field of an algebraic surface, a
variety whose geometric generic fiber is a projective homogeneous space admits

a rational point if and only if the elementary obstruction vanishes.

1. Introduction

In this introduction, we work with varieties defined over an algebraically closed
field k. By the work of Graber-Harris-Starr [GHS03] and de Jong-Starr [dJS03],
any smooth separably rationally connected variety over a function field of a k-curve
admits a rational point. One can ask a similar question over the function field k(S),
where S is a surface. Under what conditions does a variety defined over k(S) admit
a rational point?

There are two difficulties to find rational points on varieties over k(S). First,
the class of separably rationally connected varieties is too large to admit rational
points. By Tsen-Lang’s theorem [Lan52], any hypersurface of degree d in the pro-
jective space Pn such that d2 ≤ n over the function field k(S) admits a rational
point and the bound is sharp. This suggests that we should study varieties sharing
the common geometric features with hypersurfaces in the above range. These vari-
eties are examples of rationally simply connected varieties, introduced by de Jong
and Starr [dJS06]. Roughly speaking, they are varieties admitting lots of rational
surfaces.

Secondly, there are Brauer-type obstructions to the existence of rational points.
Since the Brauer group of k(S) is not trivial in general, any Brauer-Severi variety
corresponding to a nontrivial Brauer class has no rational point at all. On the
other hand, the geometric generic fiber is a projective space. Such cohomological
obstructions can be explained as a part of the elementary obstruction, discovered
by Colliot-Thélène and Sansuc [CTS87]. The elementary obstruction vanishes if
there is a rational point.

Combining the above two observations, de Jong and Starr formulated the fol-
lowing principle.

Principle 1.1 (de Jong-Starr [dJS06]). A rationally simply connected variety defined
over k(S) admits a rational point if the elementary obstruction vanishes.

One piece of evidence for Principle 1.1 is de Jong-Starr’s proof for the period-
index theorem over k(S) [SdJ10]. It is equivalent to prove that Principle 1.1 holds
for Grassmannians. Later de Jong, He and Starr proved the following theorem.
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Theorem 1.2 (de Jong-He-Starr [dJHS11]). A projective homogeneous space of
Picard number one over k(S) admits a rational point if the elementary obstruction
vanishes.

The main ingredient of their work is to show that homogeneous spaces of Pi-
card number one are rationally simply connected. Combining the work of Colliot-
Thélène, Gille, and Parimala [CTGP04], Serre’s conjecture II over function fields of
surfaces follows as a corollary. In 2008, Borovoi, Colliot-Thélène, and Skorobogatov
proved the following theorem.

Theorem 1.3 ( [BCTS08] Thm 3.8). Assumes that char k = 0. Let X be a homo-
geneous space of a connected linear k(S)-group G. If the geometric stabilizers are
connected, then X admits a rational point if the elementary obstruction vanishes.

Borovoi-Colliot-Thélène-Skorobogatov’s theorem suggests that Principle 1.1 may
hold for a more broader class of homogeneous spaces.

In this paper we formulate the rational simple connectedness for projective homo-
geneous varieties of higher Picard numbers. See Hypotheses 5.9, 5.10, 5.11. These
are geometric properties which can be checked after the base change to the alge-
braically closure. As an application, we prove that Principle 1.1 holds for projective
homogeneous spaces.

Theorem 1.4. Let X be a projective variety defined over a function field of a
surface in arbitrary characteristic. Assume that the geometric generic fiber of X
is of the form G/P for some linear algebraic group G and parabolic subgroup P .
Then X admits a rational point if the elementary obstruction vanishes.

In particular, we obtain the following classification-free proof of Serre’s conjecu-
ture II for quasisplit groups over function fields of algebraic surfaces.

Corollary 1.5. Let G be a quasisplit simply connected semisimple k(S)-group.
Then every G-torsor is trivial.

Remark 1.6. By the recent work of Starr and Xu [SX11], the main techniques
developed in this paper (cf., Theorem 5.12 and Proposition 9.15, 10.1 and 10.6)
implies that Theorem 1.4 holds over global function fields as well.

1.1. Sketch of the proof of Theorem 1.4. Let K be the function field k(P1).
Since the surface S admits a pencil of curves over P1 under blowups, the function
field k(S) is the same as the function field K(C). Finding a k(S)-rational point is
equivalent to find a K-section of a fibration π : X → C.

Let π : X → C be a smooth family of projective homogeneous spaces over a
curve C. The vanishing of the elementary obstruction is equivalent to the existence
of a universal torsor T [Sko01]. Theorem 1.4 is proved by the following steps.

Step 1 There exists a sequence of “canonically” chosen irreducible components
{Ze(X/C/K)}e≥e0 in the moduli space of sections of X/C.

Step 2 For each integer e, we can define an Abel map,

αT : Ze(X/C/K)→ {the classifying stack of torsors over C of degree e}
by pullback of the universal torsor to get a torsor over C. This is a generalization
of the classical Abel map to the intermediate Jacobian. The targets have coarse
moduli spaces as a sequence of abelian varieties {Ae} with lots of K-rational
points.
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Step 3 We then analyze the geometric properties of the Abel map and prove that
the geometric genric fiber F of αT is rationally connected.

Step 4 Applying the result of Graber-Harris-Starr [GHS03] on F , we have a
section σ : C → X defined over K.

In section 2-5, we deal with Step 2. Here we generalize the notion of universal
torsors to the relative setting, construct the Abel map and show its basic geometric
properties. In Section 6, we define the sequence of components Ze as in Step 1
(Definition 6.7).

In section 7 and 8, we prove Step 3 under Hypothesis 5.9, 5.10, 5.11. See Theorem
8.9. In section 9 and 10, we verify all hypotheses for projective homogeneous spaces
which finishes Step 3.

Section 11 is on discriminant avoidance which reduce the problem to treat with
smooth family only. We conclude with the proof of Theorem 1.4 and Corollary 1.5
in section 12.
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would also like to thank Professors Jean-Louis Colliot-Thélène, Johan de Jong,
Skip Garibaldi and Zhiyu Tian for helpful discussions. The author is grateful
to the anonymous referee for his/her detailed comments and suggestions on the
manuscript.

2. Elementary Obstructions and Universal Torsors

In this section, we first recall the elementary obstruction to the existence of ra-
tional points of varieties over fields, then generalize this construction to the relative
case which gives an obstruction theory for the existence of sections. Throughout
this section, we work with sheaves and cohomology in the fppf site.

2.1. Elementary Obstructions over a field. The standard references for ele-
mentary obstructions are Colliot-Thélène-Sansuc’s original paper [CTS87] and Sko-
robogatov’s book [Sko01].

Let K be a field. Let X be a smooth projective K-variety and X be the base
change of X to the algebraic closure K. Let p : X → SpecK be the structure
morphism.

The relative Picard scheme PicX/K = R1p∗Gm is a fppf sheaf represented by
a group variety over K by [Gro62, n◦232, 3.1]. Let S be the character group of
PicX/K , which is of multiplicative type over K. When Pic(X) is finitely generated,
it is uniquely determined by S.

The set of isomorphism classes of S-torsors over X is classified by the cohomology
group H1(X,S). By [CTS87, Théorème 1.5.1], there exists a long exact sequence
of cohomological groups.

(2.1)
0 −−−−→ H1(K,S) −−−−→ H1(X,S)

χ−−−−→ HomK(PicX/K ,PicX/K)

∂−−−−→ H2(K,S) −−−−→ H2(X,S)

Definition 2.1. Assume that Pic(X) is a finitely generated abelian group. An
S-torsor T over X is universal if χ(T ) is the identity morphism on PicX/K .

Definition 2.2. Let Id be the identity morphism of PicX/K . The class e(X) :=

−∂(Id) ∈ H2(X,S) is called the elementary obstruction of the variety X over K.
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Proposition 2.3. Assume that Pic(X) is finitely generated.

(1) The universal torsor exists if and only if the elementary obstruction e(X)
vanishes.

(2) If X admits a K-rational point, then the universal torsor exists, or equiv-
alently the elementary obstruction e(X) vanishes.

Proof. The first part follows from the long exact sequence (2.1). Since a K-rational
point on X gives a left inverse of the map H2(K,S) → H2(X,S) as in (2.1), the
connecting map ∂ is the zero map. In particular, the elementary obstruction e(X)
vanishes. �

Theorem 2.4 ( [Sko01] Thm. 2.3.4). Let X be a smooth projective K-variety. As-
sume that Pic(X) is a finitely generated abelian group. The class e(X) ∈ H2(X,S)
coincides with the class of the following natural 2-fold extension of Galois modules.

1 −−−−→ Gm,X −−−−→ K(X)∗ −−−−→ Div(X) −−−−→ Pic(X) −−−−→ 0

Remark 2.5. One may use the above theorem to give a general definition of elemen-
tary obstructions for smooth integral K-varieties without the assumption on the
finite generation of Picard groups. However, we prefer this definition via universal
torsors because we are mainly interested in the geometric aspect of the elementary
obstruction. The finite generation of Picard groups holds for smooth projective
rationally connected varieties.

2.2. Relative Universal Torsors.

Hypothesis 2.6. Let K be a field. Let π : X → C be a flat projective family of
varieties over a smooth projective K-curve C. Assume that the family satisfies the
following conditions:

(1) The geometric fibers of π are reduced and irreducible. Hence by [Gro62,
n◦232, Thm 3.1], the relative Picard functor PicX/C is represented by a
separated C-group scheme locally of finite type.

(2) Each closed subscheme of PicX/C which is of finite type is proper over C.

(3) The sheaves R1π∗OX and R2π∗OX are trivial and commute with base
change.

(4) The geometric generic fiber of π is smooth and simply connected, i.e. no
finite étale cover.

Remark 2.7. (1) Condition (2) as above is very restrictive. But it holds for
smooth families by [BLR90, p. 232 Thm 3] and for families where the
geometric fibers have isolated parafactorial singularities [Gro05, XI 3.1].

(2) In characteristic zero, by [Kol86] Theorem 7.1, if the general fiber is ra-
tionally connected, the direct images Riπ∗OX vanishes for i > 0. The
base change property holds if the geometric fibers have Du Bois singulari-
ties [DB81, 4.6]. In particular, it holds for log canonical families [KK10].

(3) Kollár proved that any smooth projective separable rationally connected
variety over an algebraically closed field is simply connected [Kol03, The-
orem 13]. Thus Condition (4) holds for projective families with general
fibers smooth separable rationally connected.

Proposition 2.8. Hypothesis 2.6 holds for the following families:

(1) smooth families of projective homogeneous spaces;
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(2) Lefschetz pencils of hypersurfaces in Pn, where n ≥ 5.

Proof. It suffices to check all the conditions in Hypothesis 2.6 for these families.
For smooth families of projective homogeneous spaces, Condition (1) is trivial and
Condition (2) holds by [BLR90, p. 232 Thm. 3]. By proper and base change
theorem [Har77, III.12.9], Condition (3) is implied by h1(Xt,O) = h2(Xt,O) = 0
for every geometric fiber. When the fiber is the full flag variety, this follows from
Kempf’s vanishing theorem for line bundles [Kem76]. The general case then follows
from the Leray spectral sequence. Since projective homogeneous spaces are rational,
in particular, separably rationaly connected, Condition (4) follows from the remark
as above.

For a Lefschetz pencil of hypersurfaces in Pn, where n ≥ 5, Condition (1) is
trivial. Since the singular fibers of the pencil are local complete intersections of
dimension ≥ 4, by [Gro05, XI, 3.13], they have isolated parafactorial singularities.
Thus Condition (2) follows. Vanishing of h1(Xt,O) and h2(Xt,O) gives Condition
(3). Since every smooth hypersurface in Pn with dimension at least two is simply
connected [Gro05, X, 3.10], we have Condition (4). �

Proposition 2.9. Assuming Hypothesis 2.6, the relative Picard functor PicX/C is
represented by a torsion-free finitely generated isotrivial twisted constant C-group
scheme.

Proof. By [BLR90, p. 231 Thm. 1 and Prop. 2] and condition (3) of the Hypothesis,
PicX/C is formally étale over C. Since PicX/C is of locally finite type over C, it is
étale over C. Together with condition (2), each irreducible component of PicX/C
is finite étale over C.

Let η be the generic point of C. The geometric generic fiber PicX/C(η) is isomor-
phic to a constant group scheme with coefficient group Zr. Indeed, the dimension of
each connected component of PicXη/η is zero by the vanishing of R1π∗OX . Hence
PicXη/η is the Neron-Severi group, which is finitely generated by the theorem of the
base change [BGI71, XIII, 5.1]. The torsion-freeness follows from the fact that every
torsion lines bundles gives an unramified cyclic cover and the simple connectedness
of the geometric generic fiber.

Now we may choose a basis of constant sections of the group scheme PicXη/η,
denoted by v1, . . . , vr. The section v1 dominates a connected component of PicX/C ,
say B1. After taking the finite étale base change to B1, PicX/C ×CB1 is a B1-
group scheme equipped with a canonical section. We may take further finite étale
base changes to get a B-group scheme with r canonical sections. The sections
induce a natural map Zr ×C B → PicX/C ×CB between B-group schemes. The
map is dominant by checking over the geometric generic fiber. Thus each connected
component of PicX/C ×CB is dominated by B and finite étale over B. In particular
each component is isomorphic to B. This implies that after taking the finite étale
base change to B, PicX/C becomes a torsion-free finitely generated constant group
scheme. Hence by definition, it is isotrivial. �

Recall that there is an anti-equivalence between the category of finitely generated
isotrivial twisted constant C-group schemes and the category of isotrivial finite type
C-group schemes of multiplicative type via the following functors, c.f., [ABD+64, X,
5.1, 5.6, 5.9].

S 7→ Ŝ = HomC−gr(S,Gm,C)

M 7→ D(M) = HomC−gr(M,Gm,C)
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In particular, the category of torsion-free finitely generated twisted constant C-
group schemes corresponds to the category of C-tori.

Assuming Hypothesis 2.6, we now define a C-torus S = D(PicX/C). There is
the long exact sequence, which is a relative version of (2.1).

(2.2)
0 −−−−→ H1(C, S) −−−−→ H1(X,S)

χ−−−−→ HomC−gr(PicX/C ,PicX/C)

∂−−−−→ H2(C, S) −−−−→ H2(X,S)

Let Id be the identity morphism of PicX/C .

Definition 2.10. Assuming Hypothesis 2.6, the class −∂(Id) ∈ H2(X,S) is called
the elementary obstruction for p : X → C. An S-torsor T over X is universal if
χ(T ) is the identity morphism on PicX/C .

Proposition 2.11. Assuming Hypothesis 2.6, we have the following:

(1) the universal torsor exists if and only if the elementary obstruction vanishes;
(2) if the fibration p : X → C has a section, then the universal torsor exists,

or equivalently the elementary obstruction vanishes.

Proof. The proof is the same as the absolute case in Proposition 2.3. �

3. Stable Sections and The Abel Map

Let X be a smooth proper K-variety and assume that there exists a universal
torsor T . Then there is a natural classifying map:

αT : X(K) = {K-rational points on X} → H1(K,S)

by pulling back the universal torsor [CTS87, 2.7.2]. Thus we have a partition of
rational points on X indexed by elements in the Galois cohomology group H1(K,S).
This map is crucial in studying the behavior of rational points in number theory,
e.g., R-equivalent classes [CTS87].

The main purpose of this section is to generalize this map in the relative setting
π : X → C as in Situation 2.6. In the relative setting, the classifying map is much
more interesting because it carries algebraic structures. As we will see later, there
is an algebraic map from the moduli space of stable sections to certain abelian
varieties, which generalizes the construction in [dJHS11, Sec. 6].

Hypothesis 3.1. Let π : X → C be a flat family of proper varieties over a
connected smooth projective K-curve C satisfying Hypothesis 2.6. Let S be the
relative Neron-Severi torus. Assume that the universal S-torsor T exists over X.

Let Sec(X/C/K) be the moduli functor parametrizing families of sections of
π : X → C. The functor Sec(X/C/K) is representable by a scheme which is a
countable union of quasi-projective varieties by [Gro62, Part IV.4.c].

Let BSC/K be the classifying stack of S-torsors on C. When S is Gm,C , the
classifying stack is the Picard stack, which is an algebraic stack of finite type by
[Art74, Appendix 2]. In [Beh, Chapter 4], he proved that the classifying stack of
torsors under reductive group scheme over a K-curve is a smooth algebraic stack
locally of finite type.

We have a natural 1-morphism

α′T : Sec(S/C/K)→ BSC/K
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by pullback of the universal torsor. Namely, given a family of sections σ : C×KT →
X over a K-scheme T , s∗T gives a family of S-torsors over C. This is called the
Abel map.

Definition 3.2. The stack of stable sections of the family π : X → C, denoted by
Σ(X/C/K), is the fiber of the stabilization morphism

π∗ : Mg(C)(X)→Mg(C)(C, [C])

over the identity map Id : C → C.

The natural 1-morphism Sec(X/C/K) → Σ(X/C/K) is represented by open
immersions of schemes. Thus the proper algebraic stack Σ(X/C/K) is a compact-
ification of Sec(X/C/K). It is natural to ask if the Abel map can be extended to
the stack of stable sections.

Proposition 3.3. Assuming that Hypothesis 3.1 holds, there exists a 1-morphism

αT : Σ(X/C/K)→ BSC/K

extending the Abel map α′T : Sec(X/C/K) → BSC/K . Without ambiguity, we call
the extended map αT the Abel map.

Proof. A family of stable sections of π : X → C over a K-scheme T is equivalent
to the following commutative diagram.

C ′

f

��

σ // X ×K T

(π,IdT )
xx

C ×K T

The pullback of the universal torsor gives an S-torsor T over C ′.
Since S is a C-torus, there exists an étale morphism g : D → C which splits S,

i.e., S×CD is isomorphic to Grm,D. Let D′ be the fiber product (D×KT )×C×KTC ′.

D′
g′−−−−→ C ′

f ′
y f

y
D ×K T

g−−−−→ C ×K T
By descent theory, any S-torsor over C ′ is equivalent to a Grm,D-torsor over D′

satisfying the descent datum. Let E be the pullback of T via g′, which is a Grm,D-

torsor over D′. In particular, E is a product E1 × · · · × Er of Gm,D-torsors over D′.
Let p1, p2 : D′×C′D′ → D′ be the natural projections. The descent datum is given
by an isomorphism

(3.1) φ : p∗1E1 × · · · × p∗1Er ' p∗2E1 × · · · × p∗2Er
satisfying the cocycle condition p∗13φ = p∗23φ ◦ p∗12φ. Let φij : p∗1Ei → p∗2Ej be the
component-wise morphism.

Now we apply the functor det(Rf ′∗) to each factor of E , c.f., [dJHS11, Def. 3.11]
and [KM76]. We get a Grm,D-torsor F = det(Rf ′∗E1)×· · ·×det(Rf ′∗Er) over D×KT .
It is easy to check that F is well-defined.

We need to check that the torsor descends. First we construct an isomorphism ψ :
p∗1F ' p∗2F . Since the functor det(Rf ′∗) commutes with the base change, it suffices
to construct a morphism ψ : det(Rf ′∗p

∗
1E1)× · · · × det(Rf ′∗p

∗
1Er)→ det(Rf ′∗p

∗
2E1)×
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· · · × det(Rf ′∗p
∗
2Er). This can be defined component-wise by det(Rf ′∗φij). Write ψ

as det(Rf ′∗φ). To check that ψ is an isomorphism, define the inverse det(Rf ′∗φ
−1)

as above and their composition is just the matrix multiplication det(Rf ′∗φ
−1) ◦

det(Rf ′∗φ
−1) = det(Rf ′∗Id) = Id. The descent cocycle condition follows directly

from the descent cocycle condition for φ and the base change property of det(Rf ′∗).
Therefore F descents to an S-torsor over C.

When C ′ is C × T , the construction is the same as pullback of the universal
torsor, which coincides with the Abel map. �

4. Rational Curves on Homogeneous Spaces

Let k be an algebraically closed field of characteristic zero. Let X be a projective
homogeneous space under a linear algebraic k-group. By Bruhat decomposition,
the Picard lattice of X is freely generated by the line bundles associated to the
Schubert varieties of codimension one, denoted by L1, · · · ,Lr. The effective cone is
generated by Li’s. Indeed, any effective divisor

∑r
i=1 aiLi intersects each Schubert

curve non-negatively by homogeneity. Thus by the intersection pairing, ai’s are all
non-negative. By homogeneity again, we see that the effective cone coincides with
the nef cone. Thus the invertible sheaf L = L1 + · · · + Lr is ample. Since X is
simply connected and homogeneous, by Stein factorization, the invertible sheaf L
is in fact very ample. We introduce some special curve classes on the projective
homogeneous space X.

Definition 4.1. (1) The degree of a curve C in X is the L-degree of C.
(2) The degree one curves in X are called lines.
(3) A curve (class) is simple if Li-degree is either zero or one for all i’s.
(4) A curve (class) is maximal if Li-degree is one for all i’s.

Note that any stable rational curve with a simple curve class type is
automorphism-free. The following result is a simple corollary of the main theo-
rems in [FP97], [KP01].

Proposition 4.2. Let β be a simple curve class in X. The Kontsevich moduli space
M0,n(X,β) of pointed stable rational curves in X is a fine moduli space, represented
by a nonempty smooth projective rational variety. �

5. The Abel Sequences

Notation 5.1. Let K be a field of characteristic zero. Let C be a smooth connected
K-curve. Let π : X → C be a smooth family of projective homogeneous spaces.
Assume that the relative Picard number, i.e., the rank of PicX/C(C) is one. Assume
that the Picard number of the geometric generic fiber of π is r. Let S be the
character C-group scheme of PicX/C . Assume that the relative universal S-torsor
T exists for the family.

By Proposition 2.8, the relative Picard scheme PicX/C is a torsion-free finitely
generated isotrivial twisted constant C-group scheme. Thus the character group
scheme S is an isotrivial C-torus.

Let η be the geometric generic point over C. We can choose a canonical basis of
the constant group scheme PicXη/η, denoted by L1, . . . ,Lr such that Li’s are line
bundles of Xη associated to the Schurbert cells of codimension one.
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By [ABD+64, Exposé X Cor. 1.2 and Cor. 5.7], the group scheme PicX/C is
equivalent to specifying the geometric fiber at η as a discrete continuous π1(C, p)-
module, where p is a geometric point of C.

Lemma 5.2. The geometric fiber of PicX/C at η is a discrete continuous permu-
tation π1(C, η)-module with the Galois invariant basis L1, . . . ,Lr.

Proof. It is well known that the geometric generic fiber of PicX/C at is a dis-
crete continuous permutation Gal(η/η)-module with the Galios invariant basis
L1, · · · ,Lr, c.f., [CTGP04, Proof of Lemma 5.6]. The lemma follows from the
fact that the natural map Gal(η/η) → π1(C, η) is surjective by [Gro71, Exposé V
Prop. 8.2]. �

Construction 5.3. Since the rank of PicX/C(C) is one, L1, · · · ,Lr over η dominate
a unique connected component of PicX/C , denoted by D. By Proposition 2.9, D is
a curve finite étale over C. Denote the structure map D → C by φ.

In fact, D admits the following Galois module interpretation. We choose a

connected finite Galois cover g : D̃ → C which completely splits L1, · · · ,Lr with
the Galois group Γ. In particular, Γ acts on the set {L1, · · · ,Lr} transitively with

the stabilizer group Γ0 with respect to L1. Then D is isomorphic to D̃/Γ0. Denote

ψ : D̃ → D the quotient map. Furthermore, we have the following Cartesian
diagram ∐r

i=1 D̃ −−−−→ Dy φ

y
D̃

g−−−−→ C.

The Neron-Severi torus S in our setup is indeed quasisplit.

Lemma 5.4. [Bri15, Lemma 3.2] S is isomorphic to RφGm,D. �

Now we introduce a natural 1-morphism

R−1
φ : BSC/K → BGm,D

given by pulling back an S-torsor by φ to get a RφGm,D ×C D-torsor and then re-
ducing the structure group to Gm,D by the natural adjunction (projection). In fact,
this is an equivalence of stacks and the inverse 1-morphism is the Weil restriction
functor Rφ, c.f., [ABD+64, XXIV 8.2].

Let PicD/K be the relative Picard scheme and let c : BGm,D → PicD/K be the
coarse moduli space map. Consider the Abel map defined in Proposition 3.3 and
post-compose with R−1

φ and the coarse moduli space map, we get the following.

Definition 5.5. In Situation 5.1, the Abel map for the family of homogeneous
spaces π : X → C with respect to the universal torsor T is the composition,

αT : Σ(X/C/K) −−−−→ BSC/K
R−1
φ−−−−→ BGm,D

c−−−−→ PicD/K .

Let Σe(X/C/K) be the inverse image α−1
T (PiceD/K). The number e is called the

T -degree for the families of stable sections.

Let σ : C ′ → X be a stable section corresponding to a geometric point of
Σe(X/C/K). Then there exists a unique subcurve C0 of C ′ such that σ restricting
on C0 is a honest section. The curve C0 meets the rest of C ′ at finitely many points



10 YI ZHU

p1, . . . , pδ. In fact, σ is obtained by the honest section σ0 attaching with δ stable
rational curves C1, . . . , Cδ at p1, . . . , pδ, and the teeth lie in the fiber.

Let qi,j be the geometric points lying in the fiber of φ at pi, where j = 1, . . . , r.

Proposition 5.6. In Situation 5.1, let σ : C ′ → X be a stable section corresponding
to a geometric point of Σe(X/C/K). Then there exists integers eij such that the
image under the Abel map is

(5.1) αT (σ) = αT (σ0)⊗OD(Σi,jeijqi,j),

and the set {ei1, · · · , eir} coincide with the set {deg(L1|Ci), · · · ,deg(Lr|Ci)}.
In particular, when we attach a vertical line to a section at p1, the term

OD(Σje1jq1,j) becomes OD(q1,j) for some j. So the T -degree increases by one.
When we attach a vertical maximal curve to a section at p1, the term OD(Σje1jq1,j)
becomes OD(Σjq1,j). So the T -degree increases by r.

Proof. Since Weil restriction functor is compatible with the base change, the state-

ment can be checked by descent. Let g : D̃ → C be as in Construction (5.3). We
have the following diagram.

∐
D̃′

φ̃′

��

f̃ ′ ""

// D′

��

φ′

��

∐
D̃

g̃
//

φ̃

��

D

φ

��

D̃′

f̃
##

g′
// C ′

f
��

σ
// X

D̃
g

// C

σ0

??

Since D̃ splits the Picard lattice, the pullback g′∗σ∗T is a Grm-torsor. The torsor
T being universal implies that g′∗σ∗T is isomorphic to the Grm-torsor associated
with L1×· · ·×Lr [Pey04, Prop. 8.1]. By the construction of the extended Abel map

as in Lemma 3.3, g∗αT (σ) ∼= det(Rf̃∗L1)× · · · × det(Rf̃∗Lr). Since L1 × · · · × Lr
is isomorphic to Rφ̃′(

∐
Li), we have that

g∗αT (σ) ∼= det(Rf̃∗L1)× · · · × det(Rf̃∗Lr) ∼= Rφ̃(
∐

det(Rf̃ ′∗Li)).

Thus the Abel image αT (σ) is given by descending the line bundle
∐

det(Rf̃ ′∗Li) to

D. Since
∐
D̃ is a disjoint union, it suffices to descend one line bundle det(Rf̃ ′∗L1)

from ψ : D̃ → D.
We will show the case when the stable section C ′ has only one rational curve C1

attaching on σ0 at σ0(p). The general case can be proved similarly.
Choose a point s ∈ g−1(p) and let F be the maximal vertical rational subcurve in

g′−1(C1) through s. Since g is Galois over C, any vertical rational curve in g′−1(Ci)
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is expressed by γ(C), for some γ ∈ Γ. By [dJHS11, Lem. 6.7], we have

det(Rf̃ ′∗L1) = L1|D̃ ⊗OD̃(
∑
γ∈Γ

(L1.γ(F ))γ(s))(5.2)

= L1|D̃ ⊗OD̃(
∑
γ∈Γ

(γ−1(L1).F )γ(s))(5.3)

where (∗.∗) is the intersection pairing. By assumption, we know that Γ-orbit of L1

is the set {L1, · · · ,Lr}. Descending (5.3) via ψ : D̃ → D gives the formula as in
(5.1). �

Definition 5.7. In Situation 5.1, let k be an algebraically closed field extension of
K. A section of π : Xk → Ck is m-free if for a general effective Cartier divisor D
of Ck of degree m,

H1(Ck, σ
∗Nσ(Ck)/Xk(−D)) = 0.

A section is unobstructed if it is 0-free, and free if it is 1-free. A section is (g)-free
if it is (2g(Ck) + 1)-free.

Definition 5.8. Let X/C/K and T be as in Situation 5.1. Let e0 be an integer.
An Abel sequence for X/C/K is a sequence (Ze)e≥e0 of an irreducible component
Ze of Σe(X/C/K) which is geometrically irreducible and satisfies the following
properties.

(1) For every e ≥ e0, a general point of Ze parametrizes a (g)-free section.
(2) For every e ≥ e0, the Abel map restricted at Ze

αT : Ze → PiceD/K

is surjective and the geometric generic fiber is integral and rationally con-
nected.

(3) For every (g)-free section σ : C ⊗K K → X ⊗K K of T -degree e0, there
exists an integer δ0 such that for every integer δ ≥ δ0, every stable section
obtained by attaching δ lines in the fiber to σ lies in Ze0+δ.

A pseudo Abel sequence is a sequence (Ze)e≥e0 as above where (2) is replaced by the
weaker condition that the Abel map αT |Ze is surjective and the geometric generic
fiber is integral.

In Situation 5.1, we propose the following hypotheses.

Hypothesis 5.9. Let t be a geometric point of C. Let Xt be the geometric fiber
over t. For any simple curve class β, the evaluation morphism

ev : M0,1(Xt, β)→ Xt

is smooth surjective with integral rationally connected geometric fibers.

Hypothesis 5.10. For some integer m, the evaluation morphism for two-pointed
chains of m maximal rational curves,

ev : Chn2(X/C,mθ)→ X ×C X
has smooth integral rationally connected general fibers.

Hypothesis 5.11. [See in Definition 8.2] Let η be the generic point of C. Let Xη

be the geometric generic fiber of π. There exists a very twisting maximal scroll in
Xη.
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Theorem 5.12. In Situation 5.1, assume that Hypotheses 5.9, 5.10, and 5.11 hold.
Then there exists an Abel sequence for X/C/K.

Proof. By [Sta10, Lem. 4.11], to prove the existence of an Abel sequence, it suf-
fices to prove when the base field K is uncountable and algebraically closed. Now
Theorem 5.12 follows from Theorem 8.9. �

6. The Sequence of Components

Notation 6.1. Let k be an uncountable algebraically closed field of characteristic
zero. Let C be a smooth connected k-curve. Let π : X → C be a smooth family of
projective homogeneous spaces. Assume that the relative Picard number, i.e., the
rank of PicX/C(C) is one and assume that the Picard number of each geometric
fiber is r. Let S be the character C-group scheme of PicX/C . Let φ : D → C be a
finite étale morphism such that S = RφGm,D as in (5.3). Assume that the universal
S-torsor T exists for the family.

Lemma 6.2 ( [GHS03]). Let X/C/k be as in Notation 6.1. Then there exist (g)-
free sections. �

de Jong, He and Starr [dJHS11] introduced an important class of stable sections,
the porcupines. They are unobstructed and have nice inductive structures.

Definition 6.3. A porcupine in X/C/k is a stable section σ : C ′ → X such that

(1) the associated section σ0 : C → X is (g)-free,
(2) each vertical curve σ|Ci : Ci → Xti is a line in the fiber of π,
(3) the attaching points of vertical curves are all distinct on C.

We will call the section σ0 the body, and the vertical curves the quills.

Recall the following standard deformation results in [Sta10, Prop. 5.2].

Lemma 6.4. (1) The parameter space Porce(X/C/k) of porcupines of T -
degree e is represented by an open smooth subscheme of Σe(X/C/k).

(2) The closed subscheme Porce,≥1(X/C/k) of Porce(X/C/k) parametrizing
porcupines with at least 1 quill is a simple normal crossing divisor.

(3) The open subscheme Porce,δ(X/C/k) of Porce(X/C/k) parameterizing
porcupines with exactly δ quills is a smooth, locally closed subscheme of
Porce(X/C/k) of pure codimension δ. �

There is a natural morphism

Φbody : Porce,δ(X/C/k)→ Porce−δ,0(X/C/k)

which forgets all the δ quills. Let Dδ be the δ-fold symmetric product of D and let
D◦δ be the dense open subset of Dδ parametrizing reduced divisors with reduced
images on C. By Proposition 5.6, define the refined body morphism,

Φ′body : Porce,δ(X/C/k)→ Porce−δ,0(X/C/k)×D◦δ
which sends a porcupine σ : C ′ → X with δ quills to its body together with the
attaching divisor Bσ = OD(t1 + · · ·+ tδ) on D.

Lemma 6.5. In Situation 6.1, assume that Hypothesis 5.9 holds. The refined body
morphism

Φ′body : Porce,δ(X/C/k)→ Porce−δ,0(X/C/k)×D◦δ
is smooth surjective with irreducible rationally connected geometric fibers.
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Proof. Given a section σ in Porce−δ,0(X/C/k) and a reduced divisor B = t1 +
· · · + tδ in D◦δ , let F be the space of porcupines having the body σ and δ quills
with the attaching divisor B. For each ti, there is a unique line class li such
that the attachment divisor is ti. Let Fi be the fiber of the evaluation morphism
M0,1(X/C, li) → X over the point σ(φ(ti)). By Hypothesis 5.9, Fi is a smooth
integral rationally connected variety. Therefore, F is the product of all Fi’s, which
is again a smooth integral rationally connected variety. �

Lemma 6.6. In Situation 6.1, assume that Hypothesis 5.9 holds. Let Ze0 be an
irreducible component of Σe0(X/C/k) whose general points parametrize (g)-free sec-
tions. For every e ≥ e0, there exists a unique irreducible component Ze such that
every porcupine with body in Ze0 and with e− e0 quills lies in Ze.

Proof. Let Porce0,0(X/C/k)Z be the open subscheme of Ze0 parametrizing free
sections. The space of porcupines with the body in Porce0,0(X/C/k)Z and e− e0

quills is irreducible by Lemma 6.5 and unobstructed by Lemma 6.4. Thus it is
contained in a unique irreducible component of Σe(X/C/k). �

Definition 6.7. For every integer e ≥ e0, Ze is the distinguished irreducible com-
ponent of Σe(X/C/k) associated to Ze0 .

Combining Lemma 6.6 and the proof of Lemma 5.7 and 5.8 in [Sta10], we have
the irreducibility of the geometric generic fiber of the Abel map.

Proposition 6.8. In Situation 6.1, assume that Hypothesis 5.9 holds. For every
e ≥ e0 + 2g(D)− 1, the Abel map

αT |Ze : Ze → PiceD/K

is dominant with irreducible geometric generic fiber. �

7. Pencils of Simple Combs

In this section, let X/C/k and T be as in Notation 6.1.

Definition 7.1. Let σ be a free section of X/C/k. A simple σ-comb is a stable
section of π : X → C with the body σ such that the vertical curves are simple
stable rational curves in the fiber with distinct attaching points on C.

A maximal comb is a simple comb with all the vertical curves maximal.

Definition 7.2. A two-pointed chain of rational curves in Σe(X/C/k) is useful if
the marked points and the nodes parametrize unobstructed non-stacky points in
Σe(X/C/k). We say that the two marked points are rationally equivalent.

Lemma 7.3. Any simple comb of T -degree e lies in the unobstructed non-stacky
locus of Σe(X/C/k).

Proof. For any simple comb, the body is a free section and vertical curves are
free. By [Kol96, II.7.5], the comb is unobstructed. By Proposition 4.2, any vertical
curves of a simple comb is non-stacky. Thus the comb itself is non-stacky. �

Lemma 7.4. In Situation 6.1, assume that Hypothesis 5.9 holds. Let P ∈ Σe(X/C)
be a porcupine with the body σ and δ-quills. Let Q be a simple σ-comb. If the
Abel images αT (P ) and αT (Q) are the same, P and Q are rationally equivalent in
Σe(X/C).
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Proof. Since P and Q share the same body, by Proposition 5.6, the attaching
divisors BP and BQ are linearly equivalent divisors on D. Thus there exists a pencil
P1 → Dδ connecting them. The pencil gives a rational curve in Porce−δ,0(X/C/k)×
Dδ by the following composition.

P1 −−−−→ Dδ
(s,Id)−−−−→ Porce−δ,0(X/C/k)×Dδ

Since the attaching divisor BP is in D◦δ , the rational curve intersects the image of
the refined body morphism Φ′body : Porce,δ(X/C/k)→ Porce−δ,0(X/C/k)×Dδ by

Lemma 6.5. By the result of Graber-Harris-Starr [GHS03], we can lift to a rational
curve in Σe(X/C/k) whose general points parameterize porcupines. Specializing the
family of porcupines over BQ, we get a simple σ-comb Q′ with the attaching divisor
BQ. Lemma 7.3 implies that P and Q′ are rationally equivalent. By Hypothesis
5.9, Q and Q′ are connected by a useful chain of rational curves in Σe(X/C/k).
Therefore P and Q are rationally equivalent. �

Definition 7.5. A maximal scroll R in X/C is a morphism r : R → X such that
R → C is a smooth geometrically generic ruled surface and each fiber maps to a
maximal curve with at most two irreducible components. We say that r(R) is the
image of the maximal scroll R.

A chain of m maximal scrolls is transversal if each fiber maps to a chain of m
maximal curves with at most m+ 1 irreducible components.

Lemma 7.6. In Situation 6.1, assume that Hypothesis 5.9 holds. Assume that
there exists two sections s0 and s∞ on a maximal scroll R → C such that the
corresponding sections σ0 := r(s0) and σ∞ := r(s∞) on X are free over C. Then
there exists an integer N such that a general maximal σ0-comb C with N -teeth is
rationally equivalent to a simple σ∞-comb.

Proof. For any effective divisor D on C, let RD be the pullback divisor on R.
When D is general, RD is a disjoint union of smooth maximal curves. There exists
an integer N such that for a general divisor D of degree N , the linear system
|s0(C) + RD| is sufficiently ample and the codimension one points of the linear
system parametrize nodal curves, cf. [dJHS11, Lem. 9.5]. In particular, the divisor
s0(C) + RD is linearly equivalent to some divisor s∞(C) + E. Since the maximal
scroll contains singular fibers like a union of two simple curves, here r(E) is a
disjoint union of simple rational curves. Let P be the maximal σ0-comb associated
to r(s0(C) + RD) and let Q be the simple σ∞-comb associated to r(s∞(C) + E).
There is a union of two general pencils joining P and Q such that general points
parametrize nodal divisors, i.e., P is rationally equivalent to Q. This proves Lemma
7.6 when the maximal σ0-comb is contained in the image of R. For the general case,
there exists a useful chain of rational curves parametrizing the family of maximal
σ0-combs by pushing all vertical maximal curves into the scroll R by Hypothesis
5.9. �

Proposition 7.7. In Situation 6.1, assume that Hypothesis 5.9 and 5.10 hold. Let
σ0, σ∞ be two (g)-free sections of π : X → C. Let T0, resp. T∞ be the unique
irreducible component of Σ(X/C/k) containing σ0, resp. σ∞ as a smooth point.
Then there exists an irreducible open subset T ⊂ Sec(Chn2(X/C,mθ)/C) satisfying
the following:

(1) T parametrizes a family of transversal chains of m maximal scrolls;
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(2) ev0,∞|T : T → Sec(X/C)× Sec(X/C) dominates T0 × T∞;
(3) For each τ in T , evi ◦ τ : C → X gives a free section for i = 1, . . . ,m− 1,

where evi is the evaluation morphism of a node on a chain.

Chn2(X/C,mθ)

Chn2

��

ev0,∞
''

evi

**X ×X
(π,π)

vv

X

π

ttC

Proof. Consider the following commutative diagram.

V = Chn2(X/C,mθ)

Chn2

~~

ev0,∞

��

C × T

��

oo

X ×X

(π,π)

ww

C × T0 × T∞

rr

oo

C

By [dJHS11, Lem. 4.12, 4.17, Prop. 4.15], there exists a variety T parametrizing
free sections of Chn2 : V → C and a dominant morphism T → T0 × T∞, such that
the above diagram commutes.

Since T parametrizes free sections and evi : Chn2(X/C,mθ)→ X is smooth, (3)
follows from [HS05, Lem. 3.6] Lemma 3.6.

Finally, it suffices to show that a general section τ : C → Chn2(X/C,mθ) in
T gives a transversal chain of m maximal scrolls. There exists a simple normal
crossing divisor ∆ in Chn2(X/C,mθ) parameterizing chains of m maximal curves
with at least m+ 1 irreducible components. Since τ is free, a general deformation
of τ intersects the boundary strata ∆ transversally by [Kol96, II.3.7]. �

Proposition 7.8. In Situation 6.1, assume that Hypothesis 5.9 and 5.10 hold.
Let T0, resp, T∞ be an irreducible component of Σ(X/C/k) whose general point
parameterizes a (g)-free section of T -degree e0, resp, e∞. Let Porce(X/C/k)T0

,
resp, Porce(X/C/k)T∞ be the moduli space of porcupines with bodies in T0, resp,
T∞.

Then there exists an integer E such that for any integer e ≥ E there exists a
dense open subscheme

U ⊂ Porce(X/C/k)T0
×αT ,Pice

D/k
,αT Porc

e(X/C/k)T∞

in which any pair of porcupines (P0, P∞) are rationally equivalent in Σe(X/C/k).

Proof. For a general pair of (g)-free sections (σ0, σ∞), by Proposition 7.7, there is
a transversal chain of m maximal scrolls connecting them. Let R1, . . . , Rm be the
maximal scrolls and let σ1, . . . , σm−1 be the intermediate sections. Let Ni be the
integer as in Lemma 7.6 for the pair (Ri, σi−1, σi). Choose E = max{e0, e∞} +
2g(D) + r

∑m
i=1Ni. For any integer e ≥ E, let P0 be a general porcupine of T -

degree e with the body σ0. By Lemma 7.4 and Proposition 6.5, P0 is rationally
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equivalent to a general simple σ0-comb Q0 such that the teeth are the union of
N1 + · · · + Nm general maximal curves and lines. By Lemma 7.6, there exists a
useful chain connecting the sub-σ0-comb of Q0 with the teeth N1-maximal curves
and a simple σ1-comb. The remaining teeth of Q0 deform along the rational chain
by Hypothesis 5.9. Therefore P0 is rationally equivalent to a simple σ1-comb P ′1
with at least N2 + · · ·+Nm maximal curves. We can continue by applying Lemma
7.6 until we get a simple σ∞-comb P ′∞. By Lemma 7.4 again, P ′∞ is rationally
equivalent to a general procupine P∞ having the body σ∞ and the same Abel
image as P0. �

Corollary 7.9. In Situation 6.1, assume that Hypothesis 5.9 and 5.10 hold. Let
(Ze)e≥e0 be the sequence of irreducible components of Σ(X/C/k) defined in (6.7).
Then (Ze)e≥e0 is a pseudo Abel sequence for X/C/k.

Proof. By Lemma 6.6 and Proposition 6.8, it suffices to show that the sequence
satisfies condition (3) of the pseudo Abel sequence. Let σ be a (g)-free section.
By Proposition 7.8, the porcupine obtained by attaching sufficiently many quills is
rationally equivalent to a porcupine in Ze. Since useful chains does not leave Ze,
it lies in Ze. �

8. Twisting Maximal Scrolls and the Abel Sequence

In this section, letX/C/k and T be as in Notation 6.1. Let ξ : C →M0,1(X/C, θ)
be a 1-morphism. This is equivalent to a family of pointed rational maximal curves
over C as the following.

R

p

��

ev // X

π
~~

C

σ

@@

Let D be the divisor σ(C) in R.

Definition 8.1. We say that a section s of X/C is penned in a maximal scroll R
if it coincides with the section ev ◦ σ(C) in the scroll R.

Definition 8.2. The 1-morphism ξ : C → M0,1(X/C, θ) is a m-twisting maximal
scroll if the pair (R,D) determined by ξ satisfies the following properties:

(1) R is a maximal scroll in X;
(2) The sheaf OR(D) is globally generated and non-special;
(3) The normal bundle NR/X is globally generated and non-special;

(4) For every divisor Γ on C of degree ≤ m, H1(R,NR/X(−D) ⊗OR
p∗OC(−Γ))) = 0.

When m = 2, we say that ξ is very twisting maximal scroll.

Proposition 8.3 ( [Sta10] Lemma 7.3). The 1-morphism ξ : C → M0,1(X/C, θ)
is a m-twisting maximal scroll if and only if it satisfies the following:

(1) ξ(C) intersects the boundary divisor of M0,1(X/C, θ) transversally;
(2) The sheaf p∗OR(D) is globally generated and non-special;
(3) The composition ev ◦ ξ : C → X is a free section;
(4) The sheaf ξ∗Tev⊗OCOC(−Γ) is globally generated and non-special for every

divisor Γ on C of degree ≤ m.
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When g(C) = 0, condition (2) is equivalent to that ξ∗TΦ is globally generated and
non-special. �

Definition 8.4. Let Y be a projective homogeneous space over algebraically closed
field of characteristic zero. A maximal scroll ζ : P1 →M0,1(Y, θ) is very twisting if

the induced morphism P1 →M0,1(Y × P1/P1, θ) is very twisting.
A very twisting maximal scroll in Y is wonderful if both sheaves p∗OR(D) and

p∗NR/X×P1 are ample.

Lemma 8.5 (Lemma 12.8 in [dJHS11]). Let Y be a projective homogeneous space
over algebraically closed field of characteristic zero. If Y has a very twisting max-
imal scroll, then there exist wonderful m-twisting maximal scrolls for arbitrary
m ≥ 0. �

Lemma 8.6. In Situation 6.1, assume that Hypothesis 5.9 holds. Every section is
penned in a maximal scroll in X/C.

Proof. Let σ be a section of π : X → C. Consider the following fiber product.

F //

ev′

��

M0,1(X/C, θ)

ev

��

C
σ // X

By hypothesis 5.9, F is smooth over C with rationally connected geometric fibers.
By [GHS03], there exists a section ξ : C →M0,1(X/C, θ). By attaching sufficiently
many very free curves in the fiber of ev′ on ξ, a general deformation of the comb
parametrizes a free section and thus intersects the boundary strata ∆ transversally
by [Kol96, II.3.7]. �

Proposition 8.7. In Situation 6.1, assume that Hypothesis 5.9, 5.10 and 5.11 hold.
Let (Ze)e≥e0 be the pseudo Abel sequence in Corollary 7.9. For every e ≥ e0 � 0,
the irreducible component Ze contains a section σ which is penned in a very twisting
maximal scroll.

Proof. Let σ be a free section in Ze0 . By Lemma 8.6, σ is penned in a maximal scroll
R in X/C which corresponds to a 1-morphism ρ : C →M0,1(X/C, θ). Deforming ρ
a little bit, we may assume that a general pointed rulings of Rt is contained in the
dense open subset of M0,1(X/C, θ) swept out by a fixed wonderful very twisting
maximal scroll g in some fiber of π, cf., [dJHS11, Lem. 12.9].

Now there are arbitrarily many wonderful very twisting scrolls gti : P1 →
M0,1(Xti , θ) such that gti(0) = ρ(ti) and they are algebraically equivalent to g.

Gluing gti ’s on ρ at ρ(ti)’s, we construct a comb C ∪ ∪igti → M0,1(X/C, θ).
By [dJHS11, Lem. 12.11] and the standard comb smoothing argument, there exists
r0, for any t ≥ t0, after attaching r wonderful very twisting scrolls, a general point
smoothing ξ of the comb corresponds to a very twisting maximal scroll in X/C.
If the T -degree of the section σg in the wonderful scroll g is d, the section σξ in
the maximal scroll ξ is of T -degree e0 + td. Since the sections in gti ’s are free
rational curves in Xti , the section σξ lies in Ze0+rd. This proves the proposition
when e = e0 + rd.

The general case follows by repeating the above argument for sections in
Ze0+1,. . . , Ze0+d−1. �
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Corollary 8.8. Notations and assumptions are as in Proposition 8.7. Let Ce+r,θ
be the moduli space of maximal combs with exactly one tooth and with the bodies
in Ze. Then a general maximal comb in Ce+r,θ is contained in the image of a very
twisting maximal scroll for e� 0.

Proof. By Proposition 8.7, choose e� 0 such that a general point of Ze is contained
in a very twisting maximal scroll. It suffices to show that a deformation of combs
in Ce+r,θ can be followed by a deformation of twisting maximal scrolls containing
the combs. This follows from H1(R,NR/X(−σ −Rq)) = 0. �

Theorem 8.9. In Situation 6.1, assume that Hypothesis 5.9, 5.10 and 5.11 hold.
For e0 � 0, the pseudo Abel sequence in Corollary 7.9 is an Abel sequence for
X/C/k.

Proof. By Corollary 7.9, it suffices to show that for any e ≥ e0 � 0, the extended
Abel map

α : Ze → PicD/k

has rationally connected geometric generic fibers. Since the target is an abelian
variety, we do not worry about the rationally equivalent classes leaving the fiber of
the Abel map.

We choose an integer e0 such that for any e ≥ e0, Corollary 8.8 holds. For any
e ≥ e0 + r, there exists an open Ue,θ ⊂ Ce,θ such that every comb is contained
in a very twisting maximal scroll. By [dJHS11, Lem. 12.5], every comb in Ue,θ is
rationally equivalent to a point in the interior of Ze. Since Ue,θ is of codimension
one in Ze, a general point of Ze is rationally equivalent to a general point of Ue,θ.

Similarly, if e ≥ e0 + 2r, a general point Ze−r is rationally equivalent to a
general point in Ce−r,θ. Also note that the forgetting-tooth map Ce,θ → Ze−r ×C
has rationally connected geometric fibers by Hypothesis 5.9. Thus a general point
in Ce,θ is rationally equivalent to a general point in Ce,2θ, i.e. a general maximal
comb with exactly two quills.

For any i = 0, . . . , r− 1 and for any d ≥ 0, let e = e0 + i+ dr. By repeating the
argument above, a general point in Ze is rationally equivalent to a general point in
Ce,dθ with body in Ze0+i.

By the proof of Proposition 7.8, for each i, there exists Ei such that two general
points in Ce,dθ with the same Abel images are rationally equivalent if d > Ei.

Let E = maxi{Ei}. For any e > e0 + rE, given two general points in Ze with
the same Abel images, each of them is rationally equivalent to a general point in
Ce,dθ. From previous paragraph, they are rationally equivalent in Ze. �

9. Very Twisting Maximal Scrolls on Homogeneous Spaces

Let X be a projective homogeneous space over an algebraically closed field k of
characteristic zero. Let θ be the maximal curve class. Let ζ : P1 → M0,1(X, θ) be
a 1-morphism. We have the following diagram,

P1 ζ
// M0,1(X, θ)

Φ

��

ev // X

M0,0(X, θ)
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where Φ is the forgetful map and ev is the evaluation map. By homogeneity and
generic smoothness, the evaluation map ev is a smooth morphism. In particular,
the relative tangent bundle Tev is locally free.

Definition 9.1. The 1-morphism ζ : P1 → M0,1(X, θ) is very twisting if the
following conditions hold:

(1) the vector bundle ζ∗Tev is ample;
(2) the vector bundle (ev ◦ ζ)∗TX is globally generated;
(3) the image ζ(P1) is in the smooth locus of the forgetful map Φ and the line

bundle ζ∗TΦ is globally generated.

In this case, we say that X admits a very twisting maximal scroll.

Remark 9.2. The definition of a very twisting 1-morphism over any variety is given
in [HS05, 4.3]. It is still open how to find a very twisting 1-morphism on varieties in
general. The only known examples are general low degree complete intersections in
Pn and projective homogeneous spaces of Picard number one cf. [dJHS11]. In these
cases, one can construct a very twisting scroll of the minimal curve class type. On
the other hand, for varieties with higher Picard numbers, a very twisting morphism
usually does not exist for minimal curve classes. Thus the existence result depends
on the choice of a “good” curve class. For smooth quadric surfaces in P3, there is
no twisting surface scrolls of a minimal curve class.

Lemma 9.3. X admits a very twisting maximal scroll if there exists an 1-morphism
ζ : P1 →M0,1(X, θ) such that

(1) the sheaf ζ∗Tev is ample;
(2) the image ζ(P1) is in the smooth locus of the forgetful map Φ and the line

bundle ζ∗TΦ is globally generated.

Proof. Since X is convex, every rational curve on X is free. In particular, (ev ◦
ζ)∗TX is globally generated. �

We may assume that X is a projective homogeneous space under a connected
semisimple linear algebraic k-group G. Let T ⊂ G be a maximal torus.

Let Gm ⊂ T be a one-dimensional torus corresponding to an interior point of
a Weyl chamber. We recall basic properties of Bialynicki-Birula decompositions of
X under the torus action. See [KP01], [BB73]. The fixed points under the torus
action are isolated. For each p ∈ XGm , let Ap be the set of points x ∈ X such that

limt→0 t · x = p. By [KP01, Prop. 1], Ap is isomorphic to the affine space Cl(p),
where l(p) is the number of positive weights of the Gm-representation at TpX.

Let s, x1, . . . , xr ∈ XGm be the fixed points corresponding to the unique maxi-
mal dimensional stratum As and the set of all codimension one strata, A1, . . . , Ar
respectively. Let U be the union of A1, . . . , Ar and As, which is a dense open of X
with the complement at least codimension two.

If we take the inverse torus action on X, there exists 1-dimensional strata
A′1, · · · , A′r corresponding to the fixed point x1, . . . , xr. Let Pi be the closure of
Ai, which is a smooth Gm-invariant rational curve connecting s and xi. We call
Pi’s the standard lines on G/P with respect to the Gm-action. By [KP01], they
generate the cone of effective curve classes of G/P .

Lemma 9.4. The curve Pi is the unique Gm-invariant curve connecting s and xi.

Proof. By [KP01, Prop. 1], there exists a Gm-invariant open subset of X containing
xi which is Gm-equivalent to a definite vector space representation Vi such that the
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positive weight subspace of Vi is of codimension one. Thus Pi is the closure of the
unique Gm-invariant curve in Vi whose general point intersects As. �

Definition 9.5. Fix a Gm-action onX as above. A pointed maximal stable rational
curve f : (C, t0)→ X is transversal, if it satisfies the following properties:

(1) The image of f(C) lies in U .
(2) The curve intersects Ai transversally at f(ti).
(3) The marked point f(t0) is in As.

A transversal maximal pointed rational curve f gives an (r+ 1)-pointed rational
curve C ′ = (C, t0, t1, . . . , tr).

Proposition 9.6. Given a transversal pointed maximal stable curve f in X, the
limit limt→0 t · f in M0,1(X, θ) is a Gm-invariant pointed maximal stable rational
curve f0 : (F, p)→ X such that

(1) F is obtained by gluing P1
i ’s along the markings ti’s of C ′, for i = 1, · · · , r,

(2) The marking p is the point t0 on C ′,
(3) the map f0 maps P1

i ’s to Pi and contracts C ′ to xs.

Proof. By Proposition 4.2, M0,1(X, θ) is a smooth projective variety. Thus the limit
under the torus action exists without the semistable reduction. The rest follows
from [KP01, Prop. 2]. �

There exists a natural map,

ε : M0,1+r →M0,1(X, θ)

constructed as above. In fact, the morphsim ε is an isomorphism to its image
by [KP01]. The Gm-action on X induces the Gm-action on M0,1(X, θ). By [BB73]
and Proposition 4.2, we consider the Bialynicki-Birula decomposition under the
Gm-action on M0,1(X, θ).

Corollary 9.7. Let B be the image ε(M0,1+r). The fixed locus B is a smooth

irreducible component of the Gm-fixed point set in M0,1(X, θ) and the Bialynicki-
Birula stratum corresponding to B is of maximal dimensional.

Proof. The smoothness of B is proved in [BB73, Thm. 2.1]. A general maximal
curve in M0,1(X, θ) is transversal by Kleiman-Bertini Theorem. By Proposition

9.6, it retracts to ε(M0,1+r) under the Gm-action. Thus there exists a dense open

Gm-invariant subset of M0,1(X, θ) retracting to the fixed point locus B, which by
definition lies in the Bialynicki-Birula stratum of B. �

Lemma 9.8. There exists an embedded rational curve in the fixed component B
such that the pullback of TΦ and the normal bundle are positive.

Proof. With the discussion as above, the morphism ε : M0,1+r → B is an isomor-

phism. Consider the forgetful map F0 : M0,1+r → M0,r by forgetting the first

marked point. The fibers of F0 give free curves in M0,1+r such that the pullback

of TΦ is ample. We can choose a very free curve in M0,r and lift it to a rational

curve D in M0,1+r. After attaching sufficiently many fibered curves of F0 to D, a
general smoothing of the comb yields the desired property. �

Now we consider the inverse Gm-action on M0,1(X, θ). By Corollary 9.7, There
exists a fixed point component B′ whose Bialynicki-Birula stratum is of maximal
dimension.
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Let f : (C, p) → X be a general maximal rational curve in X. We may as-
sume that [f ] lies in both Bialynicki-Birula strata corresponding to B and B′. Let
ζ : P1 → M0,1(X, θ) be a Gm-orbit curve of [f ]. The image ζ(0), resp., ζ(∞)
corresponds to a Gm-invariant curve [f0] in B, resp., [f∞] in B′. By [BB73, Thm.
4.3], we have the following Gm-equivariant decomposition of the tangent spaces,

T[f0]M0,1(X, θ) = T[f0]B ⊕ T[f0]M0,1(X, θ)+,

T[f∞]M0,1(X, θ) = T[f∞]B
′ ⊕ T[f∞]M0,1(X, θ)−.

Here the Gm-actions on T[f0]B and T[f∞]B are both trivial and T[f0]M0,1(X, θ)+

(T[f∞]M0,1(X, θ)−) corresponds to the positive (negative) weight Gm-invariant sub-

space. Since the evaluation map ev : M0,1(X, θ) → X is Gm-equivariant and
smooth, we have the sub-decompositions of Tev:

Tev,[f0] = T[f0]B ⊕ T+
ev,[f0],

Tev,[f∞] = T[f∞]B
′ ⊕ T−ev,[f∞].

The decomposition of weight spaces at Tev,[f0] uniquely determines a decomposition
of the Gm-equivariant vector bundle ζ∗Tev, i.e.,

ζ∗Tev = E0 ⊕ E+,

where E0|[f0] = T[f0]B and E+|[f0] = T+
ev,[f0].

Proposition 9.9. A general Gm-orbit curve ζ : P1 → M0,1(X, θ) satisfies the
following:

(1) The sheaf E0 is a semi-positive vector bundle over P1.
(2) The sheaf E+ is a positive vector bundle over P1.
(3) The image ζ(P1) is in the smooth locus of Φ when r 6= 2. The line bundle

ζ∗TΦ is positive when r = 1, and is trivial when r ≥ 3.

Proof. By the definition of E0 and E+ as above, the weights of E0, resp., E+ at 0
are trivial, resp., positive. The weights of E0 and E+ at ∞ are both non-positive.
Since the degree of any Gm-equivariant line bundle equals the difference of the
weight at 0 and the weight at ∞, we get (1) and (2).

For (3), note that ζ∗TΦ is a Gm-equivariant vector bundle on P1. When r = 1, the
curve [f0] is a pointed line L in X by Proposition 9.6. Thus TΦ,[f0] is isomorphic
to TpL as a vector space. The weight is positive because the marked point is a
retracting fixed point. Similarly, the weight at TΦ,[f∞] is negative. Hence ζ∗TΦ is a
positive line bundle.

When r ≥ 3, the marked point on [f0], resp. [f∞] lies in the contracted compo-
nent and as well as in the smooth locus of Φ. Thus the weight at 0 and∞ are both
trivial under the torus action, i.e., ζ∗TΦ is a trivial vector bundle. �

Proposition 9.10. When the Picard number of the homogeneous space X is either
one or two, there exists a very twisting maximal scroll on X.

Proof. With the same notations as above, in either case, the fixed locus B which
corresponds to the maximal Bialynicki-Birula cell is a point. Hence, as in Proposi-
tion 9.9, for a general Gm-orbit curve ζ, there is no E0-summand in Tev. Thus the
weights of the Gm-vector bundle ζ∗Tev at 0, resp., at∞, are all positive, resp., neg-
ative. Therefore, ζ∗Tev decomposes into a direct sum of line bundles with degrees
≥ 2.
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When the Picard number is one, by Lemma 9.3 and the third part in Proposition
9.9, we win.

When the Picard number of X is two, we have trouble analyzing TΦ because
the two Gm-fixed points ζ(0) and ζ(∞) lie in the singular locus of Φ. However,
the singular locus of Φ in M0,1(X, θ) is of codimension two. Note that the orbit

curve ζ is free in M0,1(X, θ). Hence, a general deformation ξ : P1 →M0,1(X, θ) of

ζ avoids the singular locus of Φ and intersects the boundary divisors of M0,1(X, θ)

transversally. The pullback of the universal family over M0,1(X, θ) over ξ gives a
smooth surface S over P1 with a section D. The sheaf ξ∗Tev is positive by upper
semicontinuity. The degree of the line bundle ξ∗TΦ is the self-intersection number
(D.D) on S, which is constant in the deformed family. Thus it suffices to check
for ζ. The marked point in universal family over ζ gives a section in the smooth
locus with self-intersection zero. See [KP01, Prop. 2]. In particular, ξ∗Tφ is trivial.
By Lemma 9.3, a general deformation of ζ gives a very twisting maximal scroll on
X. �

To construct a very twisting surface maximal scroll on projective homogeneous
space of higher Picard numbers, the main idea is to glue a bunch of “nearly” very
twisting scrolls as above properly whose general smoothing is very twisting.

Construction 9.11. Let X be projective homogeneous spaces with the Picard
number greater than two. The Gm-fixed component B in (9.7) has positive dimen-
sion. By Lemma 9.8, there exists a rational curve D in B such that both ND|B
and TΦ|D are postive vector bundles. Since D is very free, we may choose dis-
tinct points p1, · · · , pk on D, where pi is the limit point of a Gm-orbit curve Ci
as in Proposition 9.9. Let C be the disjoint union

∐k
i=1 Ci. Consider the comb

D∗ = D +
∑k
i=1 Ci = D + C obtained by attaching each Gm-orbit curve Ci on D

at pi.

Lemma 9.12. After attaching sufficiently many general Ci’s on D, the comb D∗

can be smoothed.

Proof. By [GHS03, Lem. 2.6], the normal sheaf ND∗ restricted on D is the sheaf
of rational sections of ND having at most a simple pole at each pi in the normal
direction determined by TpiCi. By the short exact sequence,

0 −−−−→ ND|B −−−−→ ND −−−−→ NB |D −−−−→ 0

the normal directions in ND determined by TpiCi’s give nonzero general directions
in NB |D. Thus the quotient bundle M = ND∗ |D/ND|B is the sheaf of rational
sections of NB |D having at most a simple pole at each pi in the normal direction
determined by TpiCi. By [GHS03, Lem. 2.5], after attaching sufficiently many
general Ci’s, M is globally generated. Together with the positivity of ND|B , the
sheaf ND∗ |D is globally generated. Since all Ci’s are free, by diagram chasing, the
normal sheaf ND∗ is globally generated. In particular, the comb D∗ is unobstructed
and the nodes can be smoothed. �

Choose a smoothing of D∗ over a smooth pointed curve (T, 0) as the following,
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D∗

��

� � // S

p

��

� � // M0,1(X, θ)

0 // (T, 0)

where S is a smooth surface. Let E be the pullback bundle of Tev to S. Let E0
i ,

resp., E+
i be the trivial, resp., positive subbundle of Tev restricted to each Ci. Let

T be the vector bundle
∐
E+
i over C. Since T is a direct summand of E|C , we have

the following natural surjection.

E∨ → E∨|C → T ∨

Let K∨ be the elementary transform of E∨ along T ∨.

(9.1) 0 −−−−→ K∨ −−−−→ E∨ −−−−→ T ∨ −−−−→ 0

Dualizing the above short exact sequence, we get

(9.2) 0 −−−−→ E −−−−→ K −−−−→ T ⊗OC OC(C) −−−−→ 0.

Lemma 9.13. For any i = 1, · · · , k, h1(Ci,K|Ci(−pi)) = 0.

Proof. Restricting the short exact sequence (9.1) to Ci and applying the functor
HomOCi ( ,OCi), we get the following exact sequence

0 −−−−→ E+
i −−−−→ E|Ci −−−−→ K|Ci −−−−→ E+

i ⊗OCi OCi(Ci) −−−−→ 0.

The quotient bundle E|Ci/E+
i is E0

i and the last term of the exact sequence is
isomorphic to E+

i (−pi). In particular, we have

0 −−−−→ E0
i (−pi) −−−−→ K|Ci(−pi) −−−−→ E+

i (−2pi) −−−−→ 0.

Note that over Ci, E
0
i is trivial and E+

i is positive. We win. �
Let s1 and s2 be two sections of p both of which specialize to two distinct point

q1, q2 on D∗\C.

Lemma 9.14. We have h1(D,K|D(−p1 − p2)) = 0, after attaching sufficiently
many Ci’s on D.

Proof. Restricting the short exact sequence (9.1) to D, we get

K∨|D −−−−→ E∨|D −−−−→ T∨|D −−−−→ 0.

The above sequence is actually exact. Indeed, by restricting (9.2) to D and taking
the dual over D, since T ⊗OC OC(C)|D is torsion, we have the injection from K∨|D
to E∨|D.

In other words, the vector bundle K∨|D is the elementary transform up of E|D
along pi’s with the specific directions in E+

i ’s. Since the sub-bundle TB|D of E|D
restricting to each pi is orthgonal to T |pi = E+

i , it is also a sub-bundle of K|D.
Since TB|D is ample, to prove the Lemma, it suffices to show that the quo-

tient bundle (K|D)/(TB|D) is positive on D after attaching sufficiently many Ci’s.
Consider the following diagram.
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0 −−−−→ ( K|DTB|D )
∨
−−−−→ ( E|DTB|D )∨

t−−−−→ T∨|D −−−−→ 0y y ∥∥∥
0 −−−−→ K∨|D −−−−→ E∨|D −−−−→ T∨|D −−−−→ 0y y y
0 −−−−→ (TB|D)∨ (TB|D)∨ −−−−→ 0

.

We get that the vector bundle (K|D)/(TB|D) is the elementary transform up of
(E|D)/(TB|D) along pi’s with the direction E+

i ’s. Note that the torsion quotient t
is just the restriction of (E|D)/(TB|D) at pi’s. Thus (K|D)/(TB|D) is isomorphic
to (E|D)/(TB|D)⊗OD OD(

∑
pi), which is positive when the attachment points on

D are sufficiently many. �

Theorem 9.15. Let X be a projective homogeneous space over an algebraically
closed field k of characteristic zero. Let θ be the maximal curve class on X. There
exists a very twisting maximal scroll ζ : P1 →M0,1(X,β).

Proof. By Proposition 9.10, it suffices to prove the case when X has Picard number
greater than two. Now we may construct the comb D∗ as in (9.11) by attaching
sufficiently many general Ci’s. By Lemma 9.12, the comb can be smoothed. By
Lemmas 9.13 and 9.14, h1(D∗, Tev|D∗(−s1 − s2)) is zero. Thus by upper semi-
continuity, Tev restricting to a general smoothing of D∗ is ample.

Similarly Condition (3) of Proposition 9.9 and Lemma 9.8, the vector bundle
TΦ|D∗ is positive. Therefore TΦ restricting to a general smoothing of the comb D∗

is also positive by upper semi-continuity. The theorem is proved by Lemma 9.3. �

10. Rational Simple Connectedness of Homogeneous Spaces

Proposition 10.1. Let X be a projective homogeneous space defined over an alge-
braically closed field of characteristic zero. Then for any simple curve class β, the
evaluation morphism

ev : M0,1(X,β)→ X

is smooth surjective with integral rationally connected geometric fibers.

Proof. The evaluation map ev is smooth because of the generic smoothness and the
homogeneity of the target X. Since X is simply connected, the finite part of the
Stein factorization of ev is étale over X, thus isomorphic to X. Therefore every
geometric fiber is connected and smooth, thus integral.

By Proposition 4.2, the moduli space M0,1(X,β) is a nonempty smooth projec-
tive rational variety. By [dJHS11, Lem. 15.6], the geometric fibers of the evaluation
morphism are rationally connected. �

Let k be an algebraically closed field of characteristic zero. Let G be a connected
reductive linear algebraic group over k. Let T ⊂ G be a maximal torus of rank t
and let B be a Borel subgroup of G containing T . The choice of (G,B, T ) gives a
root system. Let ∆ = {α1, · · · , αt} be a basis of the root system. Let W be the
Weyl group of the root system generated by simple reflections {si = sαi |αi ∈ ∆}.

Let nw ∈ NG(T ) be a representative of w ∈ W . The map w 7→ nwB induces a
one-to-one correspondence between the Weyl group and the set of T -fixed points in
G/B. We simply write w for the corresponding fixed point.
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Let U be the unipotent radical of B. By Bruhat decomposition [Bor91, 14.12],
G/B is a disjoint union of U -orbits Uw and each orbit is isomorphic to the vector
space kl(w), where l is the length function on the Weyl group. Let w0 be the
longest element of W . It corresponds to the maximal dimensional Bruhat cell. Let
w1, · · · , wt be the fixed points of G/B which correspond to the codimension one
Bruhat cells.

Let Gm ⊂ T correspond to the interior of the positive Weyl chamber. By [Car02,
3.4.7], the Bialynicki-Birula decomposition of G/B coincides with the Bruhat de-
composition. Thus each standard line in G/B is the unique Gm-invariant line
connecting w0 and wi.

Lemma 10.2. Every maximal curve in G/B is algebraically equivalent to the union
of all standard lines.

Proof. This is a corollary of Proposition 4.2 and Proposition 9.6. �
Let I be a subset of ∆. Let WI be the subgroup of the Weyl group generated

by simple reflections of I. The standard parabolic subgroup is of the form BWIB.
Every parabolic subgroup of G is conjugate to the standard parabolic subgroup PI
containing B. Thus every projective homogeneous space under G is of the form
G/PI .

Let πI : G/B → G/PI be the natural projection. The induced Gm-action on
G/PI induces a one-to-one correspondence between the Gm-fixed points and the left
coset space W/WI . For each coset wWI , there exists a unique representative w′ with
the minimal length and and l(w′w′′) = l(w′) + l(w′′) for any w′′ ∈WI , cf. [Hum90,

1.10]. By [Car02, 3.4.8], each Bialynicki-Birula cell of wWI is isomorphic to kl(w
′).

It is easy to see that w0 = w0wI0 , where wI0 is the longest element in WI and l(w0)
is the dimension of G/P .

Lemma 10.3. For each standard line in G/PI , there exists a unique lifting to a
standard line in G/B.

Proof. First we show that every fixed point in G/P corresponding to a codimension
one cell uniquely lifts to a fixed point in G/B satisfying the same property. For
each coset wWI with the representative w′ discussed above, w′wI0 is the unique
element in wWI with maximal length. If a coset wW corresponds to a codimension
one cell in G/P , i.e., l(w′) = l(w0)− 1, we have

l(w′wI0) = l(w′) + l(wI0) = l(w0) + l(wI0)− 1 = l(w0)− 1.

Thus the fixed point w′wI0 in G/B corresponds to a unique codimension one cell.
The standard line L connecting w0 and w′wI0 in G/B projects to a Gm-invariant

curve connecting w0W and w′W in G/P . By Lemma 9.4, the image πI(L) is a
standard line in G/P . Since the projection morphism between the big cell of G/B
and the big cell of G/P is a Gm-equivariant linear morphism between vector spaces,
the degree of πI |L is one. Thus L maps isomorphically onto its image, which is a
standard line. We get the lifting. �

Lemma 10.4. Every maximal curve in PI/B gives a simple curve of G/B.

Proof. With the Gm-action on G/B as above, by Lemma 10.2, it suffices to show
that standard lines in PI/B correspond to standard lines in G/B and the corre-
spondence is injective. Any standard line in PI/B is the unique Gm-invariant line
connecting wI0 and wI0si, where ti ∈ I by Lemma 9.4. After the left translation by
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w0, we get a Gm-invariant line connecting w0 and w0si, which is standard in G/B
by Lemma 9.4 again. Since such correspondence is induced by a left translation,
clearly it is injective. �

Proposition 10.5 ( [dJHS11], Def. 7.1). The moduli space Chn2(X,mθ) of two-
pointed chains of m stable maximal curves in X is represented by a nonempty
smooth projective variety. �

Proposition 10.6. Let X be a projective homogeneous space defined over an al-
gebraically closed field of characteristic zero. Then there exists m such that the
geometric generic fiber of the evaluation morphism

ev : Chn2(X,mθ)→ X ×X
is smooth integral rationally connected.

Proof. By Corollary 10.5, the moduli space of two-pointed chains of m maximal
curves is a smooth projective variety. By induction on m and Proposition 4.2, it is
rationally connected. By the proof of [dJHS11, Lem. 15.8], it suffices to show that
the evaluation

ev : Chn2(X,m0θ)→ X ×X
is surjective for some m0. Assume that X = G/P , where G is a reductive group.
We prove this by induction on the rank of G. By Lemma 10.2 and Lemma 10.3,
it suffices to show the case when X = G/B. When the rank of G is one, the
surjectivity of ev is trivial because G/B is isomorphic to P1.

When the rank of G is bigger than one, let ∆ be the set of simple roots of G.
Let Pi be the standard parabolic subgroup corresponding to a simple root αi ∈ ∆.
Let P i be the standard maximal parabolic subgroup corresponding to ∆− αi. Let
si be the simple reflection of αi. Consider the following diagram,

G/B
u−−−−→ G/P i

v

y
G/Pi

where G/P i is a projective homogeneous space of Picard number one and the
morphism v is a P1-bundle over G/Pi. By the proof of Lemma 10.4, the fiber of
v is algebraically equivalent to the standard line Li through w0 and w0si in G/B.
Since si is not in W∆−{αi}, the images u(w0) and u(w0si) are disjoint in G/P i. By

Lemma 10.3, Li maps to the unique standard line in G/P i. Thus all the fibers of v
map to lines in G/P i. We call the image lines in G/P i good lines. In fact, the above
diagram gives a connected proper flat prerelation on G/P i. By [Kol96, IV.4.14] and
by homogeneity, every pair of points in G/P i can be connected by a chain of good
lines of length m.

Now given a pair of points p and q in G/B, there exists a chain of m good lines
in G/P i connecting u(p) and u(q). We can lift the good lines to m two pointed
lines (l1, p1, q1), · · · (lm, pm, qm) in G/B such that u(p1) = u(p), u(qm) = u(q), and
u(qi) = u(pi+1) for i = 1, · · · ,m− 1.

The fiber of u is a projective homogeneous space under an algebraic group of
smaller rank, i.e., a Levi subgroup of Pi. By induction, we can choose chains of
maximal curves in the fiber of u, connecting p and p1, q1 and p2, etc. By Lemma
10.4, we get a chain of simple curves in X connecting p and q. By adding lines to
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make each irreducible component of the chain maximal, we get a maximal chain
connecting p and q in G/B. �

11. On Discriminant Avoidance

Let k be an algebraically closed field of arbitrary characteristic. Let S be a
k-variety of dimension d. Let K be the function field of S. Let X be a smooth
projective Fano k-variety and U be its universal torsor over X. Let r be the Picard
number of X. Since k is algebraically closed, U is a (Gm)r-torsor over X and U
exists unique up to isomorphism. We consider the following question.

Question 11.1. Given p : X → S an isotrivial family of X over S with the
vanishing of the elementary obstruction on the generic fiber, is there a rational
section?

By Proposition 2.3, the vanishing of the elementary obstruction is equivalent to
the existence of the universal torsor of XK . After shrinking the base S to an open
subset, the above question is equivalent to the following.

Question 11.2. Given (p : X → S,U) an isotrivial family of (X,U) over k, is
there a rational section?

Let G be the automorphism group of the pair (X,U) over k. The group scheme
G has T -valued points which are the pairs (φ, α), where φ : XT → XT is an
automorphism of schemes over T and α : φ∗U → U is an isomorphism of (Gm)r-
torsors.

The question 11.2 gives (p : X → S,U), which is an isotrivial family of the
pair (X,U) over S. It is natural to associate the pair with a G-torsor over S.
Consider the functor that the T -valued points over S are the set of pairs (φ, α),
where φ : XT → XT is an automorphsim of schemes over T and α : φ∗U → U is an
isomorphism of HomT (R1pT∗Gm,Gm,T )-torsors.

Lemma 11.3. If S is reduced, the functor is representable by a scheme T over S
and T is a G-torsor over S by post-composing.

Proof. Since every G-torsor over S is affine, it suffices to prove the representability
of the functor fppf locally by the descent of affine group schemes. First we will
show that the pair (p : X → S,U) is fppf locally isomorphic to the constant family.

By taking an étale neighborhood V , we may assume that the pullback of the
torsor U is a Grm-torsor over XV . Thus the relative character lattice is isomorphic
to Zr × V . We can choose a basis L1, . . . , Lr of the relative character lattice such
that each Li corresponds to a very ample line bundle (Gm-torsor) over X|V . Now
by the Hilbert scheme trick used in the proof of Lemma 2.2.1 in [SdJ10], after a flat
base change, the pairs (X|V , Li) are constant families. So is the pair (X|V ,U|V ).

This implies that the functor restricted on V is just IsomV ((XV , UV ), (XV , UV ))
and UV is a (Gm)r-torsor over XV . Since X is Fano, we know that Aut(X) is repre-
sented by a linear algebraic group. Thus IsomV ((XV , UV ), (XV , UV )) is represented
by the scheme G× V . This proves the lemma. �

Lemma 11.4. Given a G-torsor T over S, we can associate a pair (p : X → S,U)
where U is a relative universal torsor over X .

Proof. The morphism T → S is fppf. It suffices to descent the constant family
(X,U)×T to S. First we will descent the isotrivial family of X. Since such family
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has a natural polarization, the anti-canonical polarization, it is easy to check that
the polarized family descents to S. Similarly, we can descent the relative Picard
scheme and the torsor under the relative Picard scheme to S by [BLR90, Ch. 5,
Sec. 6]. The new torsor being universal follows from the universality of the constant
family, cf., [Sko01, Prop. 2.2.4]. �

Theorem 11.5. If G = Aut(X,U) is geometrically reductive, then Question 11.2
can be reduced to the projective base case.

Remark 11.6. This is called discriminant avoidance, which is studied by de Jong
and Starr [SdJ10] for isotrivial families of Picard number 1. For varieties of higher
Picard numbers, it is natural to replace ample generating line bundles in their
setting by universal torsors. The latter gives a cohomological obstruction to the
existence of rational points.

Proof. By the above two lemmas, we get a one-to-one correspondence between
isotrivial families (p : X → S,U) and G-torsors over S when S is reduced. The
remaining part is exactly the same as the proof of Theorem 2.1.3 in [SdJ10]. �

The following Lemma gives a description of G = Aut(X,U).

Lemma 11.7. If X is Fano, then G = Aut(X,U) is an extension of Grm and
Aut(X), where Aut(X) is a linear algebraic group. In particular, if Aut(X) is
geometrically reductive, G is geometrically reductive.

Proof. Since X is Fano, we can choose a large multiple of the anticanonical bundle
to embed X into a projective space. Thus Aut(X) is a linear subgroup of PGL(N).
There is a left exact sequence of linear algebraic groups, where AutX(X,U) is the
kernel of the forgetful map.

1 −−−−→ AutX(X,U) −−−−→ Aut(X,U)
F−−−−→ Aut(X)

By [Bri11, Lem. 4.1], AutX(X,U) is isomorphic to the group Hom(X,Grm). Since
X is projective, Hom(X,Grm) ∼= Grm.

It suffices to show that the forgetful map F is surjective. For any automorphism
φ of X, the pullback φ∗U is again a universal torsor. The universal torsor is unique
up to isomorphism over X when k is algebraically closed. We can choose any
isomorphism between φ∗U and U . �

Corollary 11.8. The discriminant avoidance holds for isotrivial families of Fano
varieties if the automorphism group of the fiber is geometrically reductive. �

12. Proof of the Main Theorem

Lemma 12.1. Let X be a projective homogeneous space defined over a field K.
Assume that the elementary obstruction vanishes and the Picard number of X is
greater than one. Then there exists a smooth morphism,

X
u−−−−→ Y −−−−→ SpecK

such that Y is a projective homogeneous space of Picard number one with the van-
ishing elementary obstruction. Furthermore, if Y admits a rational point p, then
the fiber u−1(p) is a smooth projective homogeneous space with the vanishing ele-
mentary obstruction.
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Proof. Let Γ be the Galois group of the field K. When the elementary obstruction
of X vanishes, by [CTS87, Prop. 2.25], Pic(X) is isomorphic to Pic(X)Γ. Thus
by assumption the rank of Pic(X)Γ is greater than one. By Lemma 5.2, Pic(X)
is a permutation Γ-module with a canonical Γ-invariant basis L1, · · · ,Lr. We can
choose a Γ-orbit in the basis, denoted by L1, · · · ,Lb. Since L = L1 + · · · + Lb is
Γ-invariant, the line bundle L is globally generated and defined over K. The linear
system |L| gives the morphism u : X → Y . It is clear from the construction that
u is smooth and Y is a projective homogeneous space and of Picard number one.
The vanishing of the elementary obstruction of Y follows from [Wit08, Lem. 3.1.2].

Let X be the base change of X to the algebraic closure. A universal torsor on X
is isomorphic to a Grm-torsor L1 × · · · Lr which is unique up to isomorphism. The
vanishing of the elementary obstruction is equivalent to that the universal torsor
on X descents to X, cf., [Sko01, Prop. 2.2.4]. Let T be the universal torsor on X
and Tp be the restriction of T on Z = u−1(p). By functorality of the restriction,

Tp×K K is the same as T ×K K|Z . The latter term is just L1× · · · Lr|Z . It is easy

to see that the restriction gives a product of a trivial Gbm-torsor and the universal
torsor on Z. Therefore the elementary obstruction of Z vanishes. �

Lemma 12.2. Let X be a projective homogeneous space G/P over an algebraically
closed field of characteristic zero. Then the connected component of the automor-
phism group Aut(X) is reductive.

Proof. Since X is Fano, the automorphism group is a linear algebraic group. Let R
be the solvable radical of the connected component of Aut(X). The solvable group
R naturally acts on X. By the Borel fixed point theorem [Bor91, III.10.4], there
exists a fixed point x of R. Let Lg be the automorphism of the left translation
on X by an element of g ∈ G, which clearly lies in the connected component of
Aut(X). For any closed point y in X, there exists g ∈ G such that Lg(y) = x. For
every element ϕ in R, since R is normal, Lg ◦ ϕ ◦ Lg−1 lies in R. Thus we have

Lg(ϕ(y)) = (Lg ◦ ϕ ◦ Lg−1)(Lg(y)) = (Lg ◦ ϕ ◦ Lg−1)(x) = x = Lg(y).

Thus ϕ fixes y, i.e. ϕ fixes every point in X. This implies that the solvable radical
R is trivial. �

Proof of Theorem 1.4. By Proposition 2.3, we only need to prove the “if” case.
By [dJHS11, Lem. 16.3], it suffices to prove the theorem in characteristic zero. By
Lemma 12.1 and induction on the Picard number, it suffices to prove the case when
the Picard number of X is one. Let π : X → U be an integral model of X, where
U is a dense open subset of S. After shrinking U , we may assume that π is smooth
and the relative universal torsor exists. By the method of discriminant avoidance,
cf., Lemma 12.2 and Corollary 11.8, we may assume that U = S is projective.

After blowing up the base points of a Lefschetz pencil of S, we have the right
column of the following diagram. When taking the base change to the generic point
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of P1, we have the left column of the following Cartesian diagram.

X −−−−→ X

π

y y
C −−−−→ Sy y

k(P1) −−−−→ P1

Let K be the field k(P1). Now we are in Situation 5.1. By Proposition 10.1 and
10.6, Hypotheses 5.9 and 5.10 hold. By Theorem 9.15, Hypothesis 5.11 holds. By
Theorem 5.12, there exists an Abel sequence (Ze)e≥e0 for X/C/K.

Therefore the Abel map α : Ze → PiceD/K is surjective with integral rationally
connected geometric generic fiber for e� 0. Since the exceptional curves on S give
the constant sections of S → P1, there exist rational points on PiceC/K for every

integer e > 0. By pullback to D, there exist rational points on PicreD/K for every
e > 0, where r is the geometric Picard number of X. When e� 0 and divisible by
r, the fiber of the Abel map over a rational point of PicD/K is integral rationally
connected defined over K. By [GHS03], there exists a K-rational point on the
coarse moduli space of Ze. By [dJHS11, Lem. 13.3], we get a rational point. �

Proof of Corollary 1.5. Since G is quasisplit, there exists a Borel subgroup B ⊂ G
defined over k(S). For any G-torsor E, we define the twisted full flag k(S)-varieties
E/B. The elementary obstruction of E/B vanishes by [Gil10, Lem. 6.4] and
[BCTS08, Lemma 2.2 (vi)]. Thus Theorem 1.4 implies that the torsor E admits a
reduction of structure group to B.

Now it suffices to show that every B-torsor is trivial. Let T be the maximal
torus in B. By [ABD+64, exp. XXIV, Prop. 3.13], T is a quasisplit torus. Thus
by Hilbert’s theorem 90, H1(k(S), T ) = 0. Let U be the unipotent radical of B.
Consider the exact sequence of Galois cohomology

H1(k(S), U)→ H1(k(S), B)→ H1(k(S), T ),

where both the first and the third term vanishes. This implies that every B-torsor
is trivial. �
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théorème de Riemann-Roch. Lecture Notes in Mathematics, Vol. 225. Springer-Verlag,
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