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Abstract. In this paper, we study A1-equivalence classes of zero cycles on

open algebraic surfaces. We prove the logarithmic version of Mumford’s the-
orem on zero cycles. We also prove that the log Bloch conjecture holds for
surfaces with log Kodaira dimension −∞.

1. Introduction

Let X be a smooth projective complex surface. Understanding the structure of
the Chow group of zero cycles of degree zero CH0(X)0 is important but difficult.
Mumford first studied this group and proved the following theorem.

Theorem 1.1 ([Mum68]). If h0(X,Ω2
X) > 0, the group CH0(X)0 is infinite-dimen-

sional.

In the other direction, we have Bloch’s conjecture as below.

Conjecture 1.2 ([Blo80]). If h0(X,Ω2
X) = 0, then the Albanese morphism induces

an isomorphism
CH0(X)0 ∼= Alb(X).

Bloch’s conjecture has been proved for smooth projective surfaces with Kodaira
dimension less than two [BKL76]. For surfaces of general type, many cases have
been proved, but it is still widely open in general [Voi03, Chapter 11].

For not necessarily proper varieties, Spieß and Szamuely [SS03] observe that
the right replacement for a Chow group of zero cycles is Suslin’s 0-th algebraic
singular homology h0(U)0 and furthermore they prove the log Roitmann’s theorem
for smooth quasiprojective varieties in all dimensions.

Definition 1.3. Let U be a smooth quasiprojective variety. Two zero cycles A1,
A2 of degree n are A

1-equivalent if there exists a zero cycle B of degree m such
that

• A1 +B and A2 +B are effective;
• there exists a morphism z : A1 → Symn+m U such that z(0) = A1 + B,
z(1) = A2 +B.

Definition 1.4. Suslin’s zeroth homology h0(U)0 is the group of all zero cycles on
U of degree 0 modulo A1-equivalences.

When U is a curve, A1-equivalence is indeed the equivalence relation of divisors
defined by the modulus D as in [Ser88, V.2].
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Theorem 1.5 ([SS03, Theorem 1.1]). Given a smooth quasiprojective variety U ,
the Albanese morphism

alb : h0(U)0 → Alb(U)

induces an isomorphism on the torsion subgroups.

It is natural to consider Mumford’s theorem for smooth quasiprojective surfaces.
Consider the map

σd : Symd(U)× Symd(U) → h0(U)0,

(Z1, Z2) �→ [Z1]− [Z2].

By Lemma 3.4 below, the fiber of this map is a countable union of constructible sets.
Thus we can define a dimension cd of the general fiber of σd and set dim Im(σd) =
2d dimU − cd.

Definition 1.6. We say that h0(U)0 is infinite-dimensional if

lim
d→∞

dim Im(σd) = ∞.

In this paper, using logarithmic algebraic geometry, we prove the log Mumford
theorem.

Theorem 1.7 (Log Mumford theorem). Let (X,D) be a log smooth proper surface
pair, and let U be its interior. If h0(X,Ω2

X(logD)) > 0, then the group h0(U)0 is
infinite-dimensional.

This is proved in Corollary 3.6. Our proof follows the strategy as in [Mum68]
and the crucial part of the proof is the existence of induced log forms in Proposition
2.3.

Since the set of A1-equivalence classes of divisors on open curves is the general-
ized Jacobian [Ser88], we may formulate the analogue of Bloch’s conjecture in the
logarithmic setting.

Conjecture 1.8 (Log Bloch conjecture). Let (X,D) be a log smooth proper sur-
face pair, and let U be its interior. If h0(X,Ω2

X(logD)) = 0, then the Albanese
morphism induces an isomorphism

h0(U)0 ∼= Alb(U).

We prove a special case of log Bloch’s conjecture as below.

Theorem 1.9. The log Bloch’s conjecture holds for log smooth surface pairs with
log Kodaira dimension −∞.

In arbitrary dimension, if (X,D) is log rationally connected, introduced in
[CZ14b, CZ14a, Zhu16], then we have the vanishing h0(X,Ω⊗m

X (logD)) = 0 for
any m. In this case, we prove that h0(U)0 vanishes as well. See Proposition 4.3.
However, this is too weak to prove Theorem 1.9. There exists an A1-ruled surface
pair with q(X,D) = Alb(U) = 0 but not log rationally connected [Zhu16, Section
4].

Notation 1.10. In this paper, we work with (log) varieties and log pairs over complex
numbers C. We refer to [Kat89] or [Gro11, Ch. 3] for basic notions in log geometry.
For any log scheme (X,MX), we denote by X◦ the open subset with the trivial log
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structure and denote by Ωq(X,MX) the sheaf of log q-forms. A log rational curve
on a log variety (X,MX) is a log morphism

f : (P1,M{∞}) → (X,MX),

where M{∞} is the divisorial log stricture associated to {∞} on P
1.

A log pair (X,D) means a variety X with a reduced Weil divisor D. Let U
be its interior X − D. We say that (X,D) is log smooth if X is smooth and D
is a normal crossing divisor. A log pair is proper if the ambient variety is proper.
For a log smooth pair (X,D), we use κ(X,D) to denote the logarithmic Kodaira
dimension and define the log irregularity q(X,D) := h0(X,Ω1

X(logD)). Since they
only depend on the interior U , we may write κ(U) and q(U) as well.

2. Induced log differentials

Throughout this section, we let G be the symmetric group Sn and let (X,MX)
be a log smooth variety over C. Let D be the boundary divisor X − X◦. By log
smoothness, MX is a divisorial log structure

MX = {f ∈ OX |f ∈ O∗
X−D} ⊂ OX .

Let (Xn,MXn) be the product log structure. Then MXn is G-invariant.
Consider the quotient map:

π : Xn → Y := Xn/G.

Lemma 2.1. Let MY be the G-invariant subsheaf MG
Xn . Then (Y,MY ) is a log

variety and

π : (Xn,MXn) → (Y,MY )

is a log morphism.

Proof. Since (Xn,MXn) is a log scheme, we have

O∗
Xn ⊂ MXn ⊂ OX .

By taking the G-invariant part, we get

(O∗
Xn)G ⊂ MY ⊂ OY .

Since the first term is indeed O∗
Y , we conclude that Y is a log scheme.

The natural diagram

MY

��

�� OY

π∗

��

MXn �� OX ,

where all arrows are inclusions, shows that π is a log morphism. �

Lemma 2.2. The log variety (Y,MY ) is fine and saturated.

Proof. We know that étale locally on X, there exists a fine and saturated chart

P → OX .

Furthermore, by choosing the defining equations of the irreducible components of
D, we may assume the chart morphism factors as below:

P ⊂ MX ⊂ OX ,
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and MX is isomorphic to P ⊕O∗
X . This induces a G-invariant fs chart

Pn → OXn

for (Xn,MXn) such that

MXn ∼= Pn ⊕O∗
Xn .

Now taking the G-invariant part, we get

MY
∼= P ⊕O∗

Y ,

and actually P maps to the defining equations of the boundary divisors on Y .
Therefore, (Y,MY ) is a fine saturated log scheme. �

For any log smooth variety (S,MS) with a morphism f : (S,MS) → (Y,MY ),
let S′ = (S ×Y Xn) be the fibered product with the fs log structure MS′ ; cf.

[Ogu06, II.2.4]. Let S̃ = (S ×Y Xn)red with the induced log structure from S′. We
have a diagram as below:

(S̃,M
˜S)

p

����
���

���
��

i �� (S′,MS′)

p′

��

˜f
�� (Xn,MXn)

π

��

(S,MS)
f

�� (Y,MY ).

Given a G-invariant log q-form ω ∈ Γ(Xn,Ωq(Xn,MXn)), let

ω̃ = (f̃ ◦ i)∗(ω) ∈ Γ(S̃,Ωq(S̃,M
˜S)).

Then ω̃ is G-invariant.

Proposition 2.3. If S is log smooth, there exists a unique log q-form

ηf ∈ Γ(S,Ωq(S,MS))

such that

p∗(ηf )− ω̃ is torsion in Ωq(S̃,M
˜S).

Remark 2.4. When S has the trivial log structure, this construction of ηf coincides
with the construction in [Mum68, Section 1].

Proof. First we prove the uniqueness. Indeed, there are non-singular open dense

subsets S0 ⊂ S, S̃0 = p−1(S0) ⊂ S̃ with trivial log structures such that S0 = S̃0/Γ

and Γ acts freely on S̃0, where Γ is a quotient group of the stabilizer group of the

open subset S̃0. Thus ω̃|
˜S0

as a regular form descends to a regular form θ on S0.

By the condition in the lemma, ηf coincides with θ over S0, thus is unique.
Let ηf be the meromorphic form extending θ on S. To prove the existence, it

suffices to check that ηf as a meromorphic section of Ωq(S,MS) is regular every-
where. Since (S,MS) is log smooth, hence S is normal, it suffices to check this at
points of codimension one. Hence we may assume that S is the spectrum of a local
discrete valuation ring R with the fraction field K. Let T be the normalization of

S̃ and consider the normalization morphism

a : T → S̃.

The morphism p′ is finite, so is the composite morphism

p ◦ a : T → S.
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In particular, T is a disjoint union of local discrete valuation ring Ti = SpecRi with
the generic point SpecKi. The log structure on T is given canonically below.

Lemma 2.5. There exists a canonical fs log structure on T by choosing

MTi
= Ri − 0 ⊂ OTi

= Ri.

In particular, (T,MT ) is log smooth. �

Lemma 2.6. The morphism a : T → S̃ extends to a unique log morphism:

a : (T,MT ) → (S̃,M
˜S).

Proof. We may assume that both T and S̃ are irreducible. Since (S′,MS′) is fine
and saturated, there exists an fs chart

c : P → OS′ .

To show that a is a log morphism, it suffices to prove the image of the composite
morphism

P → OS′ → i∗O˜S → (i ◦ a)∗OT

does not contain zero. Since a is the normalization map, it is enough to show the
image of P in O

˜S does not contain zero, or equivalently, none of the images of P
in OS′ is nilpotent.

If there exists p ∈ P such that c(P ) is nilpotent, then consider the base change
of c(p)⊗OS

K via the following diagram is still nilpotent:

OS′ ⊗R K OS′��

K

��

OS = R.��

p′∗

��

Indeed, we have that OS′ is a flat OS-module and OS is a principal ideal domain.
Thus OS′ is torsion free. In particular, the nilpotent elements cannot be killed after
tensoring with K.

This tells us the log structure on S′ is non-trivial over SpecK. On the other
hand, since S◦ is non-empty, we have a log morphism

(SpecK, trivial log structure) → (S,MS)

which induces a Cartesian diagram

S′ ⊗S SpecK

��

�� (Xn,MXn)

��

(SpecK, trivial log structure) �� (Y,MY ).

By the universal property of log fibered product, S′⊗S SpecK must have the trivial
log structure. This is a contradiction. �

Now let us return to the proof of Proposition 2.3. We construct a diagram

(T,MT )
a ��

r=p◦a
�����

����
����

����
����

� (S̃,M
˜S)

p

����
���

���
��

i �� (S′,MS′)

p′

��

˜f
�� (Xn,MXn)

π

��

(S,MS)
f

�� (Y,MY )



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

6740 YI ZHU

such that

• (T,MT ) is log smooth;
• r is finite.

Since p∗(ηf )− ω̃ is torsion and (T,MT ) is log smooth, we have

r∗(ηf ) = a∗(p∗(ηf )) = a∗(ω̃).

Since ω as an element in Γ(Xn,Ω1(Xn,MXn)) is regular,

r∗(ηf ) = a∗(ω̃) = (f̃ ◦ i ◦ a)∗ω
is a regular as an element in Γ(T,Ωq(T,MT )). Now the proposition is proved using
the following lemma. �

Lemma 2.7. There is a well-defined trace map

tr : Ω1(T,MT ) → Ω1(S,MS)

such that the composite

Ω1(S,MS)
r∗ �� Ω1(T,MT )

tr �� Ω1(S,MS)

is multiplication by the degree of r.

Proof. By construction, if (S,MS) has the trivial log structure, so does (T,MT ).
Now we can simply use the standard trace map; cf., Mumford’s paper [Mum68].
From now on, we assume (S,MS) has non-trivial log structure, and so does
(T,MT ). Furthermore, since S is the spec of a local ring and log smooth, the
log structure MS is the canonical one as in Lemma 2.5. Let mS , mT be the maxi-
mal ideals, respectively.

We claim that the morphism

r : (T,MT ) → (S,MS)

is log étale. Consider the commutative diagram given by the charts

(T,MT )

��

�� A
1 = SpecZ[N]

u

��

(S,MS) �� A
1 = SpecZ[N].

Here the map u is t �→ tk, where mSOT = mk
T . This implies that the natural

morphism

T → S ×A1 A
1

is unramified. Therefore, r is log étale.
By the universal properties of log differentials, we have a sequence

Ω1(S,MS)⊗OS
OT → Ω1(T,MT ) → Ω1

(T,MT )|(S,MS) → 0.

Since r is log étale, the last term vanishes. Since both (T,MT ), (S,MS) are log
smooth of dimension one, by the Nakayama lemma, we have the isomorphism

r∗ : Ω1(S,MS)⊗OS
OT → Ω1(T,MT ).

Now the log trace map is constructed as below:

Ω1(T,MT )
(r∗)−1

�� Ω1(S,MS)⊗OS
OT

tr �� Ω1(S,MS) ,
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where the second map is induced by the trace map tr : OT → OS . The second part
of the lemma trivially follows. �

3. Log Mumford’s theorem

Lemma 3.1. Given a proper log variety (V,MV ) and a normal scheme T , any
morphism

A
1 × T → V ◦

uniquely extends to a family of log rational curves over T0

(P1,M{∞})× T0 → (V,MV ),

where T0 is a dense open subset of T and M{∞} is the divisorial log structure

associated to {∞} ⊂ P1.

Proof. Since V is proper and T is normal, we have a morphism

u : P1 × T0 → V,

where T0 is a dense open subset of T . Consider the commutative diagram

u−1MV

α

��

M{∞}×T0� �

i

��

u−1OV
u∗

�� OP1×T0
.

To prove u extends to a log morphism, it suffices to prove that for any element
g ∈ MD, u∗(α(g)) lies in M{∞}×T0

⊂ u∗OP1×T0
, or equivalently, u∗(α(g)) is

invertible on A
1×T0. By assumption, the image of A1×T0 under u factors through

V ◦. Thus we have

u∗(α(g))|A1×T0
= u∗(α(g)|V ◦)|A1×T0

.

Since the log structure on V ◦ is O∗
V ◦ , we have α(g)|V ◦ ∈ O∗

V ◦ . In particular,
u∗(α(g)) is invertible on A1 × T0. �

Notation 3.2. Let (X,D) be a log smooth proper variety with the interior U . Let
G = Sn. We pick a non-zero logarithmic q-form ω ∈ Γ(X,Ωq

X(logD)). Let ω(n) =∑n
1 p

∗
iω ∈ Γ(Xn,Ωq(Xn,MXn)). Then ω(n) is G-invariant. By Proposition 2.3,

for every log smooth variety (S,MS) and morphism

f : (S,MS) → (Y,MY ),

we have an induced q-form

ηf ∈ Γ(S,Ωq(S,MS)).

Theorem 3.3. Let T be a smooth variety. Given a morphism f : T → SnU , it
extends to a morphism

f : (T,O∗
T ) → (Y n,MY n).

If all the 0-cycles in the image f(T ) are A1-equivalent, then it follows that

ηf = 0.
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Lemma 3.4. SnU ×SnU contains a countable set Z1, Z2, · · · of constructible sets,
such that if (A,B) ∈ SnU × SnU , then

A ∼A1 B ⇐⇒ (A,B) ∈
∞⋃
i=1

Zi.

For each i, there is a reduced scheme Wi and a set of morphisms

ei : Wi → Zi,

fi : Wi → SmU,

gi : W × A
1 → Sn+mU

such that we get the equations between zero cycles:

gi(w, 0) = p1(ei(w)) + fi(w),

gi(w, 1) = p2(ei(w)) + fi(w),

for all w ∈ Wi and ei is surjective.

Proof. We observe the fact that if A,B ∈ SkU are joined by a chain of p A1-curves
E1, · · · , Ep such that

E1(0) = A,

Ep(1) = B,

Ei(1) = Ei+1(0) = Ci, i = 1, · · · , p.

Then A + C1 + · · · + Cp−1 and C1 + · · · + Cp + B in SpkU are joined by a single
A1-curve, whose degree is bounded by the degree of the Ei’s. Therefore, for any
pair (A,B), the condition A ∼A1 B is equivalent to that there exists C ∈ SmU
and an irreducible A1-curve E on Sn+mU of bounded degree connecting A+C and
B + C.

For any l, we define (Y l,MY l) the fine saturated log scheme constructed in
Lemma 2.1 and Lemma 2.2 for the quotient scheme Y l := X l/Sl. Clearly, there
exists a strict open immersion

(SlU,O∗
SlU ) → (Y l,MY l).

By Lemma 2.2 and Lemma 3.1, any A1-curve on SlU extends uniquely to a log
rational curve on (Y l,MY l).

Now let A2(Y
n+m,MY n+m ;≤ p) be the moduli space of two-pointed stable log

rational curves of degree ≤ p on (Y n+m,Mn+m); cf., [GS13,Che14,AC] and let

A◦
2(Y

n+m,MY n+m ;≤ p) ⊂ A2(Y
n+m,MY n+m ;≤ p)

be the log trivial part which parametrize two-pointed log rational curves. We have
the natural evaluation morphism

evn+m,p : A◦
2(Y

n+m,MY n+m ;≤ p) → Sm+nU × Sm+nU.

Define the incidence reduced subscheme

Wn+m,p ⊂ SnU × SnU × SmU ×A◦
2(Y

n+m,MY n+m ;≤ p),

Wn+m,p = {((A,B), C, g)|g(0) = A+ C, g(1) = B + C}.
Define Zn+m,p as the image of Wn+m,p under the projection to SnU ×SnU , which
is constructible. Define en+m,p, fn+m,p the restriction of the natural projection
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morphisms onWn+m,p. The morphism gn+m,p is defined via the universal morphism
of log rational curves on A◦

2(Y
n+m,MY n+m ;≤ p). �

Remark 3.5. In the proof of Lemma 3.4, the moduli space of log rational curves
are not really needed. Any other reasonable sequence of moduli spaces could also
be used to define the constructible sets {Zi}, for example, [KM99, Def. 5.1, Prop.
5.3].

Proof of Theorem 3.3. Given f : S → SnU such that all zero cycles f(s) are A1-
equivalent, fix a base point A0 in the image. It follows from Lemma 3.4 and Lemma
3.1 that there is a non-singular variety T , a dominant morphism e : T → S, and
morphisms

g : T → SmU,

h : (P1,M{∞})× T → (Y n+m,MY n+m)

such that:

h(t, 0) = g(t) + f(e(t)),

h(t, 1) = g(t) +A0

for all t ∈ T .
By Proposition 2.3 and Lemma 3.1, we have induced log q-forms ηf , ηg, and ηh.

By Remark 2.4, we note that ηf , ηg, ηh|T×{0}, and ηh|T×{∞} are indeed regular
q-forms constructed by Mumford. By [Mum68, Lemma 2], we have

ηh|T×{0} = ηg + e∗(ηf ),

ηh|T×{∞} = ηg + ηA0
.

Now ηh is a log q-form on (P1,M{∞})× T . Since

Ωq((P1,M{∞})× T ) ∼= p∗1(Ω
q
T ) + p∗1(Ω

q−1
T )⊗ p∗2(Ω

1(P1,M{∞}))

and Ω1(P1,M{∞}) ∼= OP1(−1) has no global sections, it follows that

ηh = p∗1(η)

for some η ∈ Γ(Ωq
T ). Therefore,

ηh|T×{0} = ηh|T×{∞}.

Since ηA0
= 0, we find e∗(ηf ) = 0, hence ηf = 0. �

Now let us assume that dimU=2 and q = 2. Let (SnU)0 be the open subset
parametrizing zero cycles

∑n
i=1 xi such that xi’s are all distinct and ω(xi) �= 0 for

all i. The open immersion

f : (SnU)0 → SnU

induces a log morphism

f : (SnU)0 → (Y n,MY l).
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The induced log 2-form is a holomorphic symplectic form. The maximal isotropic
subspace of ηf is of dimension n. If S ⊂ (SnU)0 is a non-singular subvariety
parametrizing A

1-equivalent zero cycles, we have ηf |S = 0, thus dimS ≤ n.

Corollary 3.6. Let (X,D) be a log smooth surface with h0(Ω2
X(logD)) > 0 and

let (SnU)0 be defined as above. Then if S ⊂ (SnU)0 is a subvariety consisting
A1-equivalent zero cycles, it follows that dimS ≤ n. �

4. The log Bloch conjecture

4.1. Log rationally connected varieties.

Lemma 4.1. Let U be a smooth quasiprojective curve. For any dense open subset
V ⊂ U , any point x ∈ U is A1-equivalent to A−B, where both A and B are effective
divisors supported on V .

Proof. If x ∈ V , then the lemma is trivial. We assume that x /∈ V . We choose the
compactification (X,D) of U with D = p1 + · · · + pd, where all pi’s are distinct.
We pick an effective divisor B ⊂ V with sufficiently high degree satisfying

• h0(O(x+B −D)) = h0(O(x+B))− d;
• O(x+B −D) is very ample.

Let Hi be the hyperplane in |x + B| parametrizing divisors containing pi. By
the above condition, the Hi’s intersect transversally in |x + B| and a divisor in

|x+B| is away from D if and only if it avoids
⋃d

i=1 Hi. Since O(x+B−D) is very
ample, we may choose an effective divisor E ∈ H0(O(x+ B −D)) and E ⊂ V \B.
The base point free pencil connecting x+B and D+E is an A1-curve on the pair

(|x+ B|,
⋃d

i=1 Hi). Let A be a general element of this pencil. Then A ∼A1 x+ B.
Since B ⊂ V and the pencil is base point free, A is supported on V as well. �

Lemma 4.2. Let U be a smooth quasiprojective variety and let V ⊂ U be a dense
open subset. Then the natural map

i∗ : h0(V ) → h0(U)

is surjective.

Proof. By choosing a smooth curve C on U with x ∈ C and C ∩V �= ∅, Lemma 4.1
implies that any point x ∈ U − V is A1-equivalent to A−B, where both A and B
are effective zero cycles on V . The lemma follows. �

Proposition 4.3. If (X,D) is log rationally connected, then h0(U) = Z.

Proof. Since (X,D) is log rationally connected, let p be a general point on U and
let U ′ ⊂ U be a non-empty open subset of U such that any point in U ′ is connected
by a log rational curve through p. Thus h0(U

′) = Z. By Lemma 4.2, h0(U) is
isomorphic to Z as well. �

Remark 4.4. In general, we do not know that any pair of points in the interior of
a log RC pair is connected by a log rational curve. Any pairs with such properties
are called strongly log RC pairs.
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4.2. Surface pairs with κ = −∞.

Proof of Theorem 1.9. Let (X,D) be a proper log smooth surface pair with κ(X,D)
= −∞. By [KM98, Theorem 3.47], we run the log minimal model program on this
pair

(X,D) = (X0, D0) → (X1, D1) → · · · → (Xk, Dk) = (X∗, D∗)

such that:

(1) the log Kodaira dimension remains the same, i.e., κ(Xi, Di) = −∞;
(2) the end product (X∗, D∗) is either

(a) log ruled, or
(b) a log del Pezzo surface of Picard number one, i.e., ρ(X∗) = 1.

If the minimal model (X∗, D∗) is a log del Pezzo surface but not log ruled,
then by the works of Miyanishi-Tsunoda [MT84], Keel-McKernan [KM99], and
[Zhu16, Lemma 2.1, Theorem 2.2, 2.3], (X,D) is log rationally connected. In this
case, Theorem 1.9 follows from Proposition 4.3.

If the minimal model (X∗, D∗) is log ruled, then by [Zhu16, Lemma 2.1], (X,D)
is log ruled. In this case, Theorem 1.9 follows from Proposition 4.5 below. �

Proposition 4.5. Log Bloch’s conjecture holds for log ruled surface pairs.

First we observe the following lemma.

Lemma 4.6. Let (X,D) be a log smooth proper surface pair with the interior U .
Let X ′ be the surface obtained by a sequence of blow ups on X:

b : X ′ → X,

with the boundary D′ := b−1(D). Then log Bloch’s conjecture holds for (X,D) if
and only if it holds for (X ′, D′).

Proof. Let U ′ be the interior of (X ′, D′). We have a commutative diagram as below

h0(U
′)0

b∗
��

�� Alb(U ′)

Alb(b)

��

h0(U)0 �� Alb(U).

Since blowing up does not change the Albanese, it suffices to show that

b∗ : h0(U
′)0 → h0(U)0

is an isomorphism. This follows from the blowing up long exact sequence of Suslin’s
algebraic singular homology [MVW06, Proposition 14.19]. �

Proof of Proposition 4.5. Lemma 4.6 implies that, without loss of generality, we
may always replace (X,D) by a sequence of blow ups to prove Proposition 4.5.
Now assume that (X,D) is a log ruled surface. Let q be the log irregularity
h0(Ω1

X(logD)). We first construct a log ruling on U based on the value of q.

The case when q > 0
Consider the Albanese morphism [Iit76]

a : U → Alb(U),
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where Alb(U) = H0(Ω1
X(logD))∗/H1(U,Z) as a semiabelian variety of dimension

q. Let T0 be the closure of the image a(U) and we rename the map a : U → T0 as

f : U → T0.

Since h0(KX +D) = 0, T0 is a curve on Alb(U). Otherwise, any nowhere vanishing
log 2-form on Alb(U) pulls back to a non-zero log 2-form on U . By [Iit76, Corollary
1], T0 is a smooth curve with the diagram below

U

f

��

a �� Alb(U)

Alb(f) ∼=
��

T0
�� Alb(T0),

and a general fiber of f is irreducible.

Lemma 4.7. The morphism f : U → T0 is surjective and it gives the log ruling on
U , that is, a general fiber of f is a log rational curve.

Proof. Since there are no log rational curves on the Albanese, the log ruling on U
gets contracted via f . Since the general fiber of f is irreducible, f gives the log
ruling. Denote the image f(U) by T ′

0 ⊂ T0. Since every log 1-form on T ′
0 pulls back

to a log 1-form on U and q(T0) ≤ q(T ′
0), we have

q(T0) ≤ q(T ′
0) ≤ q(U) = q(T0).

This implies q(T ′
0) = q(T0). Thus T

′
0 = T0. �

The case when q = 0
After blowing up finitely many points on U , still denoted by U , we pick a log

ruling:

f : U → T0,

where T0 is a smooth curve. We may further assume f is surjective.

Lemma 4.8. T0 is either P1 or A1.

Proof. Pullback of log 1-forms under f implies

q(T0) ≤ q(U) = 0.

�
In either case, we choose the smooth compactification T of T0 and let S = T−T0.

After further blowing up finitely many points, still denoting the pair (X,D) and
the interior U , we may assume there exists a proper flat morphism

f : (X,D) → (T, S)

such that

(1) f(U) = T0; and
(2) the morphism

Alb(f) : Alb(U) → Alb(T0)

is an isomorphism.
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Let T1 be an open subset of T0 and let U1 := f |−1
U (T1) be an open subset of U

such that
U1

∼= T1 × A
1.

Choose a regular section σ : T1 → U1. We have the diagram as below:

T1

j
���

��
��

��
�

σ �� U

f

��

T0,

where j is indeed an open immersion. It induces a diagram on algebraic singular
homology

h0(T1)
0

j∗ ���
��

��
��

��
σ∗ �� h0(U)0

f∗
��

h0(T0)
0.

Lemma 4.9. We have a commutative diagram as below

h0(T1)
0

j∗

��

a1 �� Alb(U)

Alb(j)

��

h0(T0)
0 a0 �� Alb(T0)

where both a0 and a1 are isomorphisms. Furthermore, j∗ is surjective with the
kernel an algebraic torus H.

Proof. It follows from the theory of generalized Jacobians [Ser88]. �
Lemma 4.10. σ∗ is surjective.

Proof. The inclusion map i : σ(T1) → U factors as below:

σ(T1)
i1 �� U1 = T1 × A

1 i2 �� U .

The lemma follows from that i1∗ induces an isomorphism on h0 and that i2∗ is
surjective by Lemma 4.2. �

By Lemmas 4.9 and 4.10, we have the following commutative diagram:

Alb(T1) ∼= h0(T1)
0

j∗ 		 		��
���

���
���

�
σ∗ �� �� h0(U)0

f∗
��

�� Alb(U)

∼= Alb(f)

��

h0(T0)
0

∼=
�� Alb(T0).

Proposition 4.5 follows from the following lemma. �
Lemma 4.11.

ker(σ∗) = ker(j∗).

Proof. We only need to prove ker(j∗) ⊂ ker(σ∗). By Lemma 4.9, any element in
ker(j∗) is of the form A−B satisfying

• both A and B are effective divisors on T1 of degree d;
• A ∼A1 B on T0.
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Note that if T0 = T is proper, we may replace S = ∅ by S = {p}, where p is away
from the support of A+B. Then A is A1-equivalent to B on the open curve T0−{p}
as well. So for the rest of the proof, we assume that S �= ∅.

Recall that the morphism

f : (X,D) → (T, S)

is log ruled. By reduced fiber theorem [Sta15, Tag 09IL], after a finite base change
and also normalizing,

(X ′, D′)
g′

��

f ′

��

(X,D)

f

��

(T ′, S′ = g−1(S))
g

�� (T, S),

we may assume that all geometric fibers of f ′ are reduced over T ′−S′. Since (X ′, D′)
is log ruled over (T ′, S′), strong approximation over complex function fields away
from S′ �= ∅ [Ros02, Theorem 6.13] implies that there exists an integral section s′

over T ′ − S′. The image R0 := g′(s′(T ′ − S′)) gives an integral multisection of f
which is finite of degree N over T0. Let u : R0 → T0 be the natural map.

Since Suslin’s homology is contravariant for finite flat maps [Gei10, Section 4],
the equivalence A ∼A1 B on T0 implies that

u∗(A) ∼A1 u∗(B)

on R0. On the other hand, by our construction, for any p ∈ T1, f
−1(p) is a log

rational curve, in particular, u∗(p) ∼A1 Nσ(p). Thus we have

u∗(A) ∼A1 Nσ∗(A),

u∗(B) ∼A1 Nσ∗(B).

It follows that
N(σ∗(A− B)) ∼A1 0.

Since σ∗(A−B) is torsion in h0(U)0 and it maps to zero under f∗, by [SS03, Theorem
1.1], σ∗(A−B) is trivial on h0(U)0. �
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